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Abstract

Semiparametric Modeling of Competing Risks in a Limit Order Market

Konstantin Tyurin 

2003

This dissertation is based on three papers that have come out of the research conducted 

at Yale University during 1999-2001 and finished in Indiana University during 2002.

Chapter two introduces the competing risks methodology as an empirical tool for mod­

eling high-frequency financial data in continuous time. The competing risks are applied to 

the analysis of the timing and interaction between the Deutsche Mark/U.S. dollar quotes and 

transactions in the Reuters D2000-2 electronic brokerage system. Estimation of the model 

mostly supports the empirical evidence from previous research on electronic limit order mar­

kets. In particular, the composition of order flow is found to be sensitive to the state of the 

limit order book and the trading history. The direction of past trade is found to have strong 

predictive power for the future market activity. The model detects an adverse information 

effect due to non-trading as the traders submit and cancel their orders most aggressively 

immediately after the limit order book events.

Chapter three studies the problem of semiparametric hazard rate estimation in the 

competing risks environment. Special attention is paid to the situation where the sample 

of observed durations is highly skewed, which is fairly common for high-frequency financial 

data. The chapter provides a review of large sample properties of alternative k-nearest
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neighbor estimators and local linear smoothers. The asymptotic theory is applied to the 

problem of baseline hazard rate estimation for a large number of limit order book events.

Chapter four extends the results of the previous chapters. The set of covariates is 

expanded to include a broad range of limit order trading and liquidity characteristics. The 

cross-sectional and serial correlation of Cox regression residuals is captured by the past or­

der flow and the counts of recent transactions. The principal component analysis applied to 

the covariate indices identifies five pervasive factors tha t explain a major portion of trading 

activity. The multifactor modification leads to substantial data  compression, improves the 

goodness-of-fit, and boosts the short-term predictive power of the model relative to popular 

moving average-type forecasting rules. The competing risks methodology provides a valu­

able framework for understanding and forecasting the behavior of heterogeneous agents in a 

competitive market environment.
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Chapter 1

Introduction

This dissertation studies various aspects of the microstructural dynamics of an order-driven 

electronic financial market in the statistical framework of competing risks. In a nutshell, the 

approach identifies several discrete types of market and limit orders, and models the risks of 

their arrival, execution, and cancellation in continuous time. The hazard rates are allowed 

to depend semiparametrically on time since the last observable event and on a linear in­

dex of covariates characterizing the past history and current market conditions. The model 

is sufficiently flexible to incorporate various patterns of unobserved heterogeneity due to 

time-varying market conditions. To the extent that the structure of competing risks closely 

replicates the pervasive dynamic factors behind the trading activity, the approach can help 

researchers of market microstructure and practitioners better understand and interpret the 

behavior of market participants. Moreover, some empirical and simulation results might trig­

ger interest among traders and their sponsors, who are intrinsically interested in developing 

dynamic strategies to square existing positions at the minimal cost.

1
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1.1 M icrostructure A pproach to  Foreign E xchange D e­

term ination

A large and rapidly growing body of theoretical and empirical literature explores the liquidity, 

price formation, and order flows in financial markets around the world. The enormous 

variety of trade organization patterns can be divided in two broad categories determined 

by their mode of liquidity provision. In quote driven markets dealers (market makers or 

specialists) continuously announce their two-way prices signalling their willingness to trade 

at or near these price levels. The dealers are approached by interested customers who 

may wish to trade their desired quantities at the announced prices, while the quotes are 

continuously updated taking into account the acquired information on the true value of the 

security and the imbalances in the dealers’ own inventories. In order driven markets the limit 

orders submitted by some traders into a limit order book establish the prices a t which other 

participants can trade. While most markets combine certain features of both organizations, 

an increasing number of exchanges such as the Paris Bourse, the Toronto Stock Exchange, 

the Tokyo Stock Exchange, the Island ECN, and the Eurex, rely exclusively or primarily on 

electronically supported limit order books in their provision of the liquidity.

Since the spot foreign exchange market historically developed as a decentralized 24- 

hour market, its microstructure has several distinct characteristics th a t are substantially 

different from those in the exchange-based trading typical for stock markets and in the elec­

tronic trading in futures and derivatives. The main segment of the foreign exchange market 

has been traditionally dominated by voice-based trading of large brokers and interbank deal­

ers. Several electronic systems, most prominent of them Reuters D2000-2 and the Electronic 

Brokerage Service (EBS), tha t were actively promoted in the early 1990s to provide com­

petition to traditional brokers and direct interbank dealers, have grown enormously in the

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

late 1990s.1 The organization of foreign exchange trading on electronic brokerage systems 

is similar to the electronic limit order books existing 011 a number of stock exchanges. Both 

Reuters and EBS brokerage services are designed as essentially closed order driven systems. 

The liquidity is supplied by limit orders and consumed by market orders and limit orders 

directly crossing earlier subm itted limit orders on the opposite side of the limit order book. 

The trading activity on the top of a limit order book (i.e., at or near the current best market 

buy and sell prices) is observable to any subscriber via the trading screens. However, all 

information 011 the identity of traders remains anonymous to other users of the system. The 

information 011 the counterparties involved in any transaction only becomes available from 

an electronic confirmation message sent directly to  the agents finalizing the deal immediately 

after the match in the system occurs.

The microstructure approach to exchange rate determination postulates that the order

flow, represented either by signed number of transactions or signed volume of trade, is one

of the most important explanatory variables behind the short- and medium-run dynamics

of exchange rates. The justification of importance of the signed trade volume as a price

discovery channel comes from the observation that the large values of this variable may

indicate the presence of informed buyers or sellers trading aggressively in order to  exploit

their informational advantage. The substantial body of theoretical and empirical literature

analyzing the role of order flow as a channel of price formation in the foreign exchange market

is nicely summarized by Lyons [96]. In the more narrow context of electronic brokerage,

which will be the focus of this thesis, the informativeness of order flow can also be extended

1 Trading in the D2000-2 system, which is the main subject of the present paper, does not involve direct 

communication between agents. Therefore it is likely to be a direct competitor primarily to the interbroker

trading in the traditional voice-based segment of the spot foreign exchange market. Another Reuters system. 

D2000-1, that allows a direct electronic contact among the counterparties negotiating the deals can rather 

be considered a competitor to traditional direct interdealer voice-based trading. Lyons [94] has more on this 

distinction and its implications for the foreign exchange market microstructure research agenda.

3
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on the ground tha t the dealers can observe continuously the direction of all trades on their 

trading screens and easily infer the information on the cumulative signed transaction volume. 

Among the growing body of research conducted 011 the Reuters D2000-2 database, we only 

mention Daniellson and Payne [31], which applied the VAR model of Hasbrouck [66] to 

study the long-run effect of transaction activity on exchange rates in the D2000-2 electronic 

brokerage system, Bjonnes and Rime [14], which conducted a comparative study of inventory 

management by foreign exchange dealers using alternative trading systems, and Hillman and 

Salmon [72], which applies variogram and kriging techniques to study spatial dependence 

between the returns and few other variables in the Reuters D2000-2 data set. All these, and 

many other authors find ample empirical evidence in support of the im portant role of order 

flow for exchange rate determination.

For our data, the relationship between the cumulative trade flow and transaction prices 

can be easily detected 011 the time series plot (Figure 1.1). Additional insights can be 

drawn from the scatter plots (phase diagrams) of spot transaction DEM/USD exchange 

rates against the cumulative signed number of transactions 011 each of the five consecutive 

days October 6-10, 1997, which are shown on Figures 1.2, 1.3, 1.4, 1.5, and 1.6.2 Note that 

the relationship between these variables was found in the foreign exchange microstructure 

literature at the relatively low frequencies (c.f. Figure 1.2 in Lyons [96] at the daily frequency, 

and the results in Danfelsson and Payne [32] at the 15-minute frequency) and confirmed by 

Luo [92] for a broad spectrum of high and low frequencies.

The basic premise of the empirical market microstructure approach to foreign exchange

determination squares nicely with the reported graphs, even though the relationship between

2 We do not show the scatter plots of transaction prices against the cumulative signed trade volume which

is frequently accepted as the definition of order flow. The qualitative relationship between the price and the 

cumulative signed volume is almost identical, with the scale on the horizontal axis magnified by the size of 

an average transaction, and the remaining characteristics of the graph virtually unchanged.

4
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the cumulative flow and transaction price never appears strict, nor is it linear. In fact, it 

would be overly simplistic to expect a strict cointegrating relationship between prices and or­

der flow at the intradaily frequencies, such as the one found a t daily frequencies over a  period 

of four months in Killeen, Lyons, and Moore [S3]. As the order flow is almost never a uniform 

entity, additional characteristics of trading counterparties should provide explanatory power 

and therefore must be incorporated in the model. For example, in most microstructure mod­

els, distinction is made between trade and non-trade components of returns, with the former 

component thought to be driven by information and liquidity motivated trades, and the sec­

ond component driven by public news announcements. Lyons [96] argues informally tha t the 

order flow should be more informative when trade activity is high and less informative when 

quote activity is high, and presents an empirical evidence supporting the view th a t the price 

impact of foreign exchange orders from financial institutions is significantly higher than the 

price impact of orders from non-financial institutions. In fact, it is always im portant to keep 

in mind that the bid-ask spread, volume, and volatility of foreign exchange returns are all 

determined simultaneously through interaction of numerous traders, who have heterogeneous 

and potentially quite complex preferences, beliefs, and risk profiles. Even when the data do 

not allow identification of distinct groups of market participants, the impact of unobserved 

heterogeneity will be reduced dramatically if it is incorporated into the modeling strategy.

The link between trade flow and nominal levels of exchange rate can be strengthened 

if one goes beyond the impact of trades initiated by large financial institutions and considers 

additional observable and unobservable explanatory variables. For example, Luo [92] recently 

confirmed that the order flow in foreign exchange markets tends to be more informative 

during the periods of large bid-ask spreads, low trading volumes, and high volatility. This 

empirical fact was earlier discovered by Dufour and Engle [36] in the stock market, where 

the periods of intense trading also were found to be associated with stronger effect of trades 

on the prices. Figure 1.7 provides an example of one such variable, which is represented by

5
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the difference between the number of active buy and sell limit orders in Reuters D2000-2 

brokerage system at any moment of time. This variable (called the imbalance of the limit 

order book) represents the willingness of market participants to trade a t the prices far above 

and below the current competitive ask and bid prices, as well as their readiness to hedge 

catastrophic losses associated with sudden adverse movement of the foreign exchange level.3 

Since the major portion of the demand and supply curves contributing to the limit order 

book imbalance is usually unobserved by market participants (even though dealers might 

“feel” the relative strength of the market from private commications and from the order 

activity of their customers), the relative strength represented by the book imbalance can be 

an im portant piece of information about the future evolution of exchange rates.

Despite the heavy fragmentation and high heterogeneity of the spot foreign exchange 

order flow and its nontrivial role in the price discovery tha t should be apparent from the pre­

vious discussion, the markets in major currencies continuously provide very high liquidity as 

they are open around the clock and generally characterized by low transaction costs and low 

margin requirements. But even though the average daily foreign exchange turnover exceeds 

several times the combined trading volume in major stock markets,'1 the empirical research 

on foreign exchange market microstructure is growing relatively slowly. In particular, most 

empirical applications of high-frequency foreign exchange da ta  dealt until recently with “in­

dicative” quotes, primarily those collected by Olsen and Associates from the Reuters EFX 

informational pages. While these quotes offer a fair representation of the overall trading 

activity and remain an excellent source of high-frequency da ta  for many econometric appli­

cations, they do not contain volumes and do not present binding commitments to trade from

3Osler [111] analyzes the role played by stop-loss orders in propagation of price cascades and provides

empirical evidence of their importance for the fat tails in foreign exchange returns.
4According to the world Central Banks combined statistics, the total foreign exchange market was esti­

mated at L4 trillion US dollars a day in 1995.
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the institutions submitting the quotes. Therefore they are likely to provide only indirect and 

suggestive evidence on agents’ behavior a t the micro-level and hardly can be used to obtain 

reliable empirical results in foreign exchange market microstructure studies.

On the other hand, the electronic trading systems like Reuters D2000 and EBS remain 

the primary source of the data on binding quotes and real intradaily transaction activity in 

the spot foreign exchange market, no m atter how limited the segments of the market covered 

by these data used to be. Among the pioneers of this research we mention Goodhart et al. 

[54], who processed and extensively analyzed a short snapshot of prices and quantities that 

appeared on a seven-hour videotape of the Reuters D2000-2 trading screen on one day in 

June 1993, a t the early stages in the development of this brokerage system. In a subse­

quent paper, Goodhart and Payne [53] used the same sample to examine the determinants 

of quote revisions and spreads as well as some microstructural hypotheses in the foreign ex­

change market dynamics. The second, and perhaps most interesting data until recently came 

from the samples of the time-stamped quotes, deals, and positions for single representative 

marketmakers, or the time-stamped prices and quantities for transactions mediated by one 

or several major brokers. Such data  sets covering a whole week in August 1992 were first 

used by Lyons [93], [95], to test inventory and asymmetric information hypotheses in the 

foreign exchange market.

Finally, various aspects of foreign exchange trading are analyzed in the studies by 

Lequeux [85], Danielsson and Payne [31], [32], and Acar [1], primarily on the descriptive level. 

Even though some of these authors based their studies on larger and more representative 

samples of quotes and transactions and gave very interesting accounts of trading activity on 

both EBS and Reuters, for a variety of reasons they refrained from conducting their analyses 

on a tick-by-tick level, which may be crucial for understanding microstructure effects. This 

dissertation contains the detailed analysis of limit and market order activity in Reuters 

D2000-2 for the Deutsche Mark/US dollar exchange rate, which was the main bilateral

7
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exchange rate in 1997, when the data  was collected. This data set provides a rare opportunity 

to expand our knowledge about the role of order flow and other microstructure variables in 

the price formation on foreign exchange markets, and better understand how these markets 

work.

1.2 T he C hallenge o f M odeling M arket Liquidity

Historically, the large body of research studying frequency of quote revisions and transac­

tions was inspired and motivated by the central question of modern finance: How long does 

it take for information to be fully incorporated into prices? Since private information in 

modern financial markets, according to proponents of the microstructure approach, is ul­

timately transm itted via continuous interaction of quotes and transactions, the frequency 

and complexity of arrival patterns for these bits and pieces of information should be one of 

the key ingredients to  any transition mechanism toward the efficient price. Even though the 

information processing lags, random delays, and occasional congestions in communication 

networks can provide a partial explanation for the high level of noise and irregularity of in­

tertrade and interquote durations, their persistence and high correlation with economically 

relevant variables such as the bid-ask spread and price volatility warrant the closer look at 

the duration processes. At least, it would be fair to say that discounting intertrade durations 

as pure noise cannot be justified in many microstructure applications, whereas the attem pts 

to fully explain the duration dynamics by purely technical factors are likely to tell only part 

of the story.

It was long recognized in theoretical microstructure literature (Diamond and Verrec- 

chia [34], Admati and Pfleiderer [3], [4], Easley and O’Hara [37], O’Hara [109], Chapter 6) 

that some of non-trading and quote delays can be purposeful and informationally motivated. 

For example, a Bayesian market maker in Easley and O’Hara [37] infers about the presence

8
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of informed traders on the market from the intertrade durations, with shorter durations 

signalling the informed trader activity. However, in statistical applications, a purely statis­

tical model for duration process is almost always augmented by some proxy characterizing 

the amount of private information on the market. The choice of such proxy is justified ei­

ther theoretically by market inicrostructure models of price determination or empirically by 

availability of appropriate data at high frequencies.

The choice of the trading mode in early theoretical models was usually restricted to 

market orders that could be filled at the prices provided continuously by the market maker, 

or, alternatively, to limit orders for a fixed quantity tha t remained valid for a single time 

period and expired automatically if the order was unfilled. This obvious simplification was a 

price to pay for analytical tractability and crisp implications of the models. For example, in 

static models of the automatic limit order book by Glosten [50], and Chakravarty and Holden 

[20], the focus was on the optimal bidding strategies of limit order traders who were unwilling, 

or unable, to use market orders. A more recent strand of dynamic trade execution models 

(Parlour [112], Foucault [45]) emphasize the importance of the risk of non-execution and 

the risk of being picked off by informed traders for the order placement strategies employed 

by uninformed market participants. The first analytical results on the non-trivial interplay 

between the limit order price and the time-to-execution in complex dynamic environments 

began to appear only recently. One such example is the paper by Foucault, Kadan and 

Kandel [46], where the interactions between the trading decisions of patient and impatient 

traders play central role in the determination of dynamic equilibrium quotes and the bid-ask 

spread.

It should be clear from the above discussion that the heterogeneity of investors emerges 

as one of the driving forces behind the nontrivial properties of duration dynamics. At 

the same time it must be emphasized that the timing of transaction needs is not always 

synchronized across traders, even in the absence of traders with superior information. Traders

9
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always have a choice between the submission of a market order tha t will be filled immediately 

at the best price available at the moment of submission, and the submission of a limit order 

that can improve the execution price for the submitting counterparty at the cost of delay and 

uncertainty of execution. As a result, the variations in traders’ demand for immediacy of 

execution affects simultaneously the bid-ask spread and the depth of the market, driving the 

dynamics of the limit order book and the market liquidity. Investigation of the noil-trivial 

dynamic relationship between three dimensions of liquidity, such as immediacy (the ability 

to trade a given quantity a t a given cost), breadth (the cost of doing a trade of a given size 

quickly represented by the bid-ask spread), and depth (the size of trade that can be dealt 

quickly at a given cost) then naturally becomes the central object of research.0

The complete theoretical analysis of market liquidity in a realistic general equilibrium 

framework remains the major challenge for the market microstructure literature. The prob­

lem of solving and analyzing the multiple equilibria can be extremely complicated since 

traders’ choices are not restricted to one parameter such as the price or quantity, but also 

include the decisions between the limit and market orders, sell and buy orders, as well as 

about the timing of order execution. Moreover, in real markets the traders can cancel and 

resubmit strategically their orders at any moment of time. Since full analysis of such a dy­

namic game remains excessively complex and just impractical to implement, the theoretical 

literature so far has been focusing on one or two dimensions of traders’ decision, holding all 

other variables fixed or making other simplifying assumptions about traders’ behavior.

In an attem pt to better understand the decisions made by traders in the real world, 

many researchers concentrated their efforts on the search for stylized facts and empirical 

regularities with regard to different aspects of supply and demand for liquidity in the real 

markets. This effort was facilitated by broader availability of transaction and quote data

5See the discussion of different suspects of liquidity in Chapter 19 of Harris [64].
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at intradaily frequencies. Since this search was originally restricted to the markets that 

make such data  readily available, most of empirical papers in this area focused on the stock 

markets across the globe where systematic collection of data on quote and transaction activity 

was part of the institutional design enforced by financial regulators.6 Sometimes the data 

were also collected by private enterprises and provided to researchers on proprietary basis. 

Examples of stock market analyses include Biais, Hilllion and Spatt [12], Handa and Schwartz 

[61], Harris and Hasbrouck [65], Lo, MacKinlay and Zhang [89], Griffith et al. [58], and 

Hollifield, Miller and Sandas [74]. For example, Biais, Hillion and Spatt [12] found that 

market orders in the Paris Bourse consume the major portion of liquidity available on the 

opposite side of the bid-ask spread, which then reverts to its original level as the limit 

order traders place new orders within the best bid and ask quotes. Even though most of 

transactions in the Paris Bourse occur at the small values of spread, the authors observed 

high-frequency negative autocorrelation between the quotes, as the spread showed a tendency 

to  alternate between small and large values.

All of these studies either avoid the analysis of cancellation events altogether, or make

very simplistic assumptions about traders' cancellation policy for the existing limit orders.

The results of empirical studies taking this problem more seriously suggest th a t going beyond

the trivial assumption might be a challenge. For example, no systematic studies presently

available explain rigorously the empirical finding of Hasbrouck and Saar [69] who find that

the majority of limit orders submitted on Island ECN tha t are cancelled, get cancelled within

the first couple of seconds after submission. Needless to say, incorporating nontrivial order

cancellation strategies, even though crucial for understanding the dynamics of liquidity, is

6IIowever it must be emphasized that empirical research of liquidity patterns reveals a surprising degree 

of similarity across alternative market instruments, trading organizations, and locations. In particular, we 

believe that implications of our research will be mostly valid for a broad range of markets organized as 

electronic limit order books.
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likely to make the theoretical analysis far more complex, if not infeasible. At present the 

most promising approach appears to  be the accumulation of additional stylized facts about 

alternative aspects of liquidity in financial markets and interpretation of their properties and 

interaction within an appropriate econometric framework. The toolkit of available econo­

metric methods is briefly discussed in the next section.

1.3 E conom etric A pproach to  M odeling M arket Liq­

u id ity  in C ontinuous T im e

The econometric approach provides a statistical framework for the rigorous empirical analysis 

of financial market data. Even though the tradition of using the theory of marked point 

processes to study heterogeneous events occurring randomly in time has had a long history 

in applied sciences, applications of univariate and bivariate marked point processes to the 

analysis of high-frequency data began to appear only relatively recently, first in a series 

of papers by Engle and Russell [41], [42], followed by Engle and Lunde [40], Gourieroux 

et al. [55], Engle [39], and Russell et al. [119], among many others. In all these papers 

the irregularly spaced arrivals of transactions or quotes are modeled as a self-exciting point 

process with memory. The autoregressive conditional duration model (ACD, Engle and 

Russell [41], [42]) and its reincarnations have been the most popular specification of this 

point process so far. The markers usually represented by quotes or transaction prices and 

volumes (when available) are assumed weakly exogenous and modeled conditionally on their 

arrival times.

Development of numerous modifications of the ACD model largely parallels the his­

tory of the ARCH-GARCH literature in the early 1990s. Extensions of the ACD framework 

include the exponential ACD model by Bauwens and Giot [10], which precludes the occur-
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rence of negative durations that cannot be ruled out by the original ACD specification, the 

fractionally integrated ACD (FIACD) model by Jasiak [77], which captures the long-range 

dependence in the empirical duration process, various versions of the threshold ACD model 

where the model specification hinges on two or more regimes identified from the data (for 

example, Russell, Tsay and Zhang [119]), and the stochastic duration model (Bauwens and 

Veredas [11]) applying the structure of stochastic model to log-durations. Other researchers 

(e.g., Ghysels and Jasiak [49], Engle [39], Grammig and Wellner [56]) combined the ACD- 

style analysis of durations with GARCH-type models for the financial returns.

One of the m ajor impediments to application of this approach to  multivariate finan­

cial data has been the controversy over the appropriate way to approach the markers of 

qualitatively distinct nature appearing randomly in time. To illustrate the idea, we use as 

an example the problem of extending the ACD framework to bivariate tick-by-tick data on 

Deutsche M ark/U.S. dollar and Japanese yen/U.S. dollar exchange rates. Prior to practical 

implementation of such an extension researcher should decide on the main object of his in­

terest and make some exogeneity assumptions along the way. For the object of interest, a 

decision should be made whether the primary goal is to study durations between consecutive 

quotes for both currencies, only one of the two currencies, or perhaps only the intervals when 

Deutsche Mark ticks are followed by Japanese yen ticks. In principle, one may hope that 

this issue can always be resolved on the ad hoc basis, provided by institutional environment, 

or motivated by the goals of specific research projects. But even in this case, a systematic 

way of dealing with the markers of qualitatively distinct nature when they do not arrive in a 

natural order provides a clear benchmark for comparison, clarifying the issue of exogeneity, 

and increasing the discipline and rigor of future research. The similar problems and alterna­

tive approaches to their solution are also discussed by Engle and Lunde [40] in their model of 

trade and quote timing. Creative developments of the alternative approaches can be found 

in Spierdijk et al. [122], and in the application of the multivariate doubly stochastic Poisson
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process theory by Davis et al. [33].

Unlike the rest of the literature on point processes in finance, which ignores the inquiries 

such as what could have happen if some particular marker did not arrive (or arrived several 

seconds later), the competing risks methodology put this type of retrospective thinking at 

the centerfold of the analysis. The competing risks model is developed on the premise that 

the sample of empirical durations may be dominated by a large number of latent durations 

leading to a limited observability of cause-specific durations, most of which happen to be 

censored by other cause-specific durations. Such an approach may be more relevant in 

the analysis of liquidity than traditional methods, as the sell-censoring mechanism implied 

by the competition of traders for time priority is directly implied by the market design. 

The identification of competing risks is usually achieved with the assumption of conditional 

independence of the risks, given a sufficiently broad set of covariates.

A close counterpart to the competing risks model developed in this dissertation appears 

in Bisiere and Karnionka [13] tha t applies a fully parametric competing risks model to the 

analysis of dynamics and sequencing of orders to trade the Alcatel shares a t the Paris Bourse. 

The competing risks model by Bisiere and Karnionka provides the joint explanation of the 

durations between consecutive order arrivals and their aggressiveness, emphasizing the role 

of information about the limit order book in the price discovery process. Unlike Bisiere 

and Karnionka [13], in the present work we treat the hazard functions of competing risks 

semiparametrically, allowing freedom in the specification of baseline hazards but reducing 

the computational requirements a t the expense of a relatively rigid structure of the covariate 

index. The competing risks approach thus views the limit order flow as a sequence of 

independent or quasi-independent realizations of a multivariate marked point process (Snyder 

and Miller, [121]), the number of its components being equal to the number of notional risks 

that must be identified in advance. Depending on the main focus of research and institutional 

details of the market, the history of a limit order book in the competing risks environment
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can also be viewed as a mixture of birtli-and-death processes (McLaclilan and Peel, [100]) 

or as a nonstationary Markov random field in a discrete or continuous marker space.

From a broader perspective, the competing risks model with Cox specification of the 

hazard rates of notional risks developed in this dissertation can be thought of as a continuous 

time analogue of the multinomial logit model reformulated for the instantaneous conditional 

probabilities of individual risks (Greene, [57], Chapter 2 1 ). The baseline hazard rates of the 

notional competing risks are proportional to exponentials of the intercepts in the multinomial 

logit risk indices, whereas the conditional probability of survival over infinitesimally small 

continuous time intervals are proportional to the instantaneous risk of the base category 

in the multinomial logit model. Of course, the standard procedure of choosing some fixed 

time interval followed by aggregating the information within each interval, that must be 

performed prior to application of multinomial logit to the data, inevitably results in a loss 

of some information in the aggregates. While this loss may be dismissed as insignificant for 

some econometric applications, it appears to be critical for the studies of price formation and 

sequencing of orders when literally every quote does count and the order of their appeared 

can make a big difference for estimation and interpretation of results.

The basic assumption behind the specification of competing risks is that the s ta te  of a 

subject of study (in our case, it is predominantly the publicly observable part of the electronic 

limit order book) can be changed by a finite number of causes (sometimes called notional 

risks), which can be potentially of entirely different nature and usually are assumed indepen­

dent. At any moment of time the relative importance of notional risks is determined by the 

odds of their instantaneous realization which can be characterized by the risk-specific hazard 

functions. After a  single risk is realized and the limit order book is updated, the remaining 

risks that were competing with each other under the prior market conditions become irrel­

evant in the new state. Then the “internal clock” of the “competition” is initialized, and a 

new “race” begins immediately among the participating notional risks under the new market
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conditions, proceeding up to the moment when the next “winner” triggers another change 

in the limit order book, and so forth. A number of alternative ways to initialize and stop the 

“internal clock” , or, more generally, set pace for multiple “internal clocks” associated with 

different limit orders, allow for a substantial richness of the competing risks methodology 

and its general flexibility as a modelling device.

1.4 Overview o f th e  D issertation

This dissertation applies the competing risks model to the analysis of the order flow and 

price formation in the Reuters D2000-2 electronic brokerage system.

Chapter 2 introduces the competing risks methodology as an empirical tool for mod­

eling high-frequency financial data in continuous time. After a  brief review of key concepts 

and ideas of survival analysis, the competing risks model is applied to the analysis of the tim­

ing and interaction between the Deutsche Mark/U.S. dollar quotes and transactions in the 

Reuters D2000-2 electronic brokerage system. Estimation of this model generally supports 

empirical evidence from previous research 011 electronic limit order books. In particular, the 

composition of the order flow is found to be very sensitive to the state of the limit order 

book and the trading history. The direction of past trade has a strong predictive power for 

the future activity of buyers and sellers in the market. There is some evidence of an adverse 

information effect due to non-trading that manifests itself in the negative dependence of 

aggressive order arrival rates on time since the last observed event. It is found that traders 

tend to submit and cancel their orders most aggressively immediately after changes in the 

electronic order book.

Chapter 3 studies the problem of semiparametric hazard rate estimation of competing 

risks, with special attention paid to the case when the sample of observed durations is highly 

skewed. In this situation, which is fairly common for high-frequency financial data, the stan-

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

dard kernel estimators often fail to detect fine spikes of the hazard functions on the left and 

lead to extremely volatile hazard estimates in the right tail of the duration range. The chap­

ter provides a review large sample properties of alternative ^-nearest neighbor estimators 

and local linear smoothers. The asymptotic theory of ^-nearest neighbor estimators, which 

has been developed in the covariate-free case, is also discussed in the context of semipara- 

metric competing risk estimation problems and applied to the problem of baseline hazard 

rate estimation for a diverse range of limit order book events.

Chapter 4 extends the modeling techniques of the previous chapters in several di­

rections. First, the set of covariates is expanded to include a broad range of limit order 

book activity characteristics in addition to those traditionally used in the empirical market 

microstructure literature to quantity the liquidity. Second, the cross-sectional and serial 

correlation of the residuals in the Cox regression is captured by the lagged activity measures 

such as the past order flow and the cumulative counts of recent transactions in the haz­

ard function specifications for individual risks. Application of principal component analysis 

(PCA) to the covariate indices of the competing risks identifies five pervasive factors that 

capture 85% of the limit order book trading activity. The modified competing risks model 

incorporating the PCA factors leads to substantial data compression and improves the pre­

dictive performance of the model. By most accounts, the short-term forecasting power of the 

multifactor competing risks model is good relative to popular simple moving average-type 

forecasting rules. Even though directional signals generated by the model do not allow easy 

identification of systematic profit opportunities, the competing risks methodology is found 

to be a valuable tool for short-term forecasting of market activity and for understanding the 

behavior of heterogeneous agents in a competitive market environment.
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Figure 1.1: Evolution of transaction price and the cumulative signed order flow in Reuters

D2000-2

Figure 1.1 displays the evolution of transaction price (exchange rate) and the signed cumulative flow 
of transactions in the Reuters D2000-2 trading system on Monday. October 6. 1997. The time series plots 
are shown in the activity scale, where one unit of time corresponds to one tick (submission of market or limit 
order, or cancellation of a limit order) in the system.
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Transaction Price vs. Cumulative Order Flow
(Monday, October 6, 1997)
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Figure 1.2: Phase diagram of transaction price vs. cum trade flow on 10/06/1997

This phase diagram 011 Figure 1.2. along with the similar diagrams on Figures 1.3-1.C below, shows 
the scatter plots of transaction price (exchange rate) versus the signed cumulative How of transactions in 
the Reuters D2000-2 trading system on five consecutive days, October G-10. 1997. The cumulative flow of 
transactions is defined as the sum of signed indicators of transactions, where trades initiated by buyers of US 
dollars are counted as +1 and trades initiated by sellers of US dollars are counted as —1. All five diagrams 
show a strong positive relationship between the order flow and exchange rates, even though it never appears 
to be strict, or precise.
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Transaction Price vs. Cumulative Order Flow
(Tuesday, October 7, 1997)
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Figure 1.3: Phase diagram of transaction price vs. cum trade flow on 10/07/1997
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(Wednesday, October 8, 1997)

4** -a»««8SW*5S

,_sf*

&
.•T a

50 100 150 200

C um ulative  Flow o f T ransactions

1.7650

O
1.7600 «£

1.7550 a  
et

1.7500 «  
ui

1.7450

250

Figure 1.4: Phase diagram of transaction price vs. cum trade flow on 10/08/1997
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Transaction Price vs. Cumulative Order Flow
(Thursday, October 9, 1997)
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Figure 1.5: Phase diagram of transaction price vs. cum trade flow on 10/09/1997
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Figure 1.6: Phase diagram of transaction price vs. cum trade flow on 10/10/1997

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Figure 1.7: Evolution of the limit order book imbalance and the cumulative order flow in

D2000-2

Figure 1.7 displays the evolution of the limit order book imbalance (measured as the difference between 
the total dollar value available for sale and the total dollar value available for purchase) and the signed 
cumulative flow of transactions in the Reuters D2000-2 trading system  on Monday. October 6. 1997. The 
time series plots are shown in the activity scale, where one unit of time corresponds to one tick (submission 
of market or limit order, or cancellation of a limit order) in the system.
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Chapter 2 

C om peting Risks and th e Order Flow  

D ynam ics in FO REX Electronic 

Brokerage

This chapter approaches the microstructural dynamics in an order-driven electronic financial 

market within the statistical framework of competing risks. The competing risks are identi­

fied as the events defined by arrivals and cancellations of alternative discrete types of market 

and limit orders. Then the hazard rates of these events are modeled in continuous time. 

The hazard rates are allowed to depend semiparametrically on the time since the last ob­

servable market event and on a linear index of covariates characterizing the past history and 

current market conditions. The model can also incorporate various patterns of unobserved 

heterogeneity due to the time-varying market conditions.

The competing risks methodology is applied to analyze the timing and interaction 

between Deutsche Aktrk/U.S. dollar quotes and trades in the Reuters D2000-2 electronic 

brokerage system. The market microstructure effects observed in this segment of the foreign 

exchange market are compared to empirical characteristics of similarly designed electronic 

limit order markets for stocks.
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Estimation of this model generally supports the empirical evidence from previous stud­

ies of financial markets organized as electronic limit order books. In particular, the composi­

tion of the order flow is found to be very sensitive to the state of the limit order book and the 

trading history. There is some evidence of an adverse information effect due to non-trading 

that manifests itself in the negative dependence of hazards of aggressive order arrival on the 

time since the last observed event. Traders tend to submit and cancel their orders more 

aggressively immediately after changes in the electronic order book. Finally, the direction of 

past trade has strong predictive power for future activity of buyers and sellers in the market.

This chapter organized as follows. Section 2.1 describes in detail the Reuters D2000-2 

dealing system focusing on the public and private information on the order flow available 

to the subscribers from trading screens. It also describes the original data source and the 

method of reconstructing the trading history from the data. Section 2.2 gives an overview of 

the basic concepts of survival analysis and illustrates them in the context of the Cox propor­

tional hazard model. Section 2.3 introduces the Markov semiparametric model of competing 

risks which is the central model of this chapter. It describes the maximum likelihood estima­

tors of the covariate effects, specifies the kernel estimators of baseline hazards, and briefly 

discusses their properties. Section 2.4 presents and interprets the empirical results and draws 

some links to the existing market microstructure literature. Technical details on the counting- 

process interpretation of competing risks and asymptotic properties of the estimators will be 

reviewed and analyzed in Chapter 3 of this dissertation. Section 2.5 concludes and briefly 

discusses extensions. One of such extensions will appear in Chapter 4 of this thesis.

2.1 The R euters D 2000-2 Electronic D ealing S ystem

The Reuters D2000-2 dealing system, which is the source of our data, is one of the two 

largest providers of electronic brokerage services on the spot foreign exchange market in
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major currencies. 1 It operates as an anonymous matching service for trading in major 

currencies.2 The D2000-2 dealing system forms the queues of buy and sell limit orders on 

the precise criteria of price and then time priority. The system incorporates a pre-screened 

pricing facility to ensure tha t two anonymous counterparties in a potential trade have mutual 

credit limits before a match can happen. Once a match between the two orders occurs, the 

parties are notified on the resulting transaction and provided with the information needed 

to settle the deal.2

The Reuters clients for D2000-2 are the dealers and traders in foreign exchange trading 

rooms of major financial institutions around the globe. As D2000-2 was designed to offer 

clear benefits to its subscribers over traditional brokerage or contacting a counterparty over 

the phone, it became quite popular among clients and had a network of active counterparties 

as large as 1,124 sites globally in the middle of 1997.

The D2000-2 trading screen has the following sections (Figure 2.1):

1. The multiple currency display allows to trade up to six currency pairs simultaneously 

and highlight the active pair.

2. The market quote area shows the anonymous best bid and offer prices of limit orders 

entered into the system.

3. The market depth indicator shows the accumulated quantities available at the market 

bid and offer.

1For the description ol' the EBS. which is the second major electronic brokerage system, see Lequeux [85]. 

Both systems. Reuters D2000-2 and EBS. have a similar trading mechanism and architecture, but the locus

will be on the D2000-2 service which is the source of the data analyzed in the present paper.
2Clients must subscribe to the voice-based dealing system of D2000-1 to access D2000-2. Users can move 

from one service to the other on the same keystation. The D2000-2 service has two components of its own,

D2000-2 Spot and D2000-2 Forwards, the latter designed to facilitate foreign exchange forward trading.
3 Only the counterparty initiating the deal is charged for the transaction. The transaction fee as small as

825 is paid by the aggressor to Reuters Transaction Services Ltd.
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4. The best quote area shows the best bid and offer prices available to this trader based 

on mutual credit.

5. The best depth indicates the quantities available a t the best pre-screened prices.

6 . The trader quote and trader depth section indicates the best prices and quantities of 

active limit orders entered onto D2000-2 at this keystation.

7. The last price indicator shows the last transaction price and direction of trade that 

occured on D2000-2 for each currency pair.

8 . The trader mailbox section contains immediate confirmation messages of the trader’s 

quoting activity and the deal tickets showing all details of her trades.

The trading screen can be customized to highlight various aspects of the subscriber’s 

activity in single or multiple currencies.

2.1.1 Original D ata

The da ta  set made available by Reuters and provided by the Financial Markets Group at 

LSE covers the trading days from October 6  to October 10, 1997 and also contains a few 

orders originating late on October 5. As mentioned in the introduction, the only similar 

data  previously available to academics is a short compilation of quotes from a seven-hour 

videotape of the D2000-2 screen dated by June 16, 1993 (Goodhart et al. [54]). The data  

contain information about 130535 limit and market orders made on the bid or ask side of the 

market. Each line of the file represents one limit or market order and contains exact entry 

and exit times, price and quantity ordered, quantity dealt, and information on whether the 

order came on the bid or offer side of the market. In addition there are a few other entries 

on each line, most of them redundant, which are used to validate the information on the 

reported order characteristics.
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The data set does not include the confidential information on the identity of dealers 

submitting orders and completing transactions. Another highly relevant piece of information 

which is observed by individual subscribers on the D2000-2 screens but cannot be inferred 

from the data set are the best bid and ask quotes and the quantities of foreign exchange 

available a t these prices to any of individual traders. At every point in time these best 

quotes and quantities are based 011 the existence of mutual credit lines between any given 

subscriber and her potential trade partners submitting limit orders at this time. Although 

the quotes and quantities available to individual subscribers would coincide with the best 

quotes and quantities of the market much of the time, on average the effective bid-ask spreads 

encountered by individual traders are slightly larger than the market bid-ask spread. For the 

same reason, the quantities available for trade to individual subscribers might be different 

from the quantities on the market at any given point in time.

Since the Reuters D2000-2 data set reports the exact entry and exit times for every limit 

and market order submitted into the system, it was expected initially to provide sufficient 

information for reconstruction of the market demand and supply curves a t any point in time. 

These supply and demand curves could be used to keep track of the evolution of the best 

market bid and ask quotes and the quantities of foreign exchange available at those prices 

and to reconstruct all transactions in real time. Then it could be studied how the quotes and 

transactions move the equilibrium market price and how the arrival and cancellation events 

for limit and market orders interact with each other and affect price volatility, transaction 

volumes, market spread, and elasticities of market demand and supply. However the complete 

reconstruction of the history turned out to be infeasible without making occasional ad hoc 

assumptions that compensate for the lack of knowledge of traders’ identity. Details of the 

implementation of the procedure are described in the next subsection.
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2.1.2 R econstruction o f Trading History from the D ata

Preliminary analysis of the data shows that the discrepancies between the best market quotes 

and quantities and those available for trade to individual customers do happen regularly in 

the system and impede the precise recovery of trading history from the data. As there was 

no perfect way to get around this problem, a computational model of the limit order market 

very similar to the one described by Darhelsson and Payne [32] and Hillman and Salmon 

[72] was created to build and maintcxin the entire limit order book over the trading week 

covered by the data. The object was to obtain the exact timestamps and characteristics 

of trades that can be either the matches between market and limit orders or the crosses 

between limit orders subm itted on the opposite sides of the limit order book. The entry and 

exit timestamps for arrivals and cancellations of the limit orders not leading to immediate 

transactions were used to validate the matching procedure.

The limit orders were sorted by their arrival times and entered into the modeled limit 

order book by the price and time priority rules determined by the trading protocol. Whenever 

a cross between the arriving order and top priority limit orders on the opposite side of the 

book occured, a transaction was attem pted and validated against subsequent arrival and 

cancellation events. The validation of trading history against available data was conducted 

on several levels, including verification of exit timestamps and quantities for all expiring 

entries. In the event of contradiction between the data and the reconstructed version of 

trading history, the computational model created another version of trading history under 

alternative assumptions about matching in the system (the orders having lower priority 

were matched ahead of higher priority orders whenever possible, higher priority orders were 

allowed to stay in the book, leading to negative market bid-ask spreads for a number of 

periods, etc.)

In a  few instances when the computational model failed to resolve apparent contra­

dictions, a  supplementary manual search for anomalous entries was conducted to correct 

the errors. With the exception of two cases when limit orders leading to the errors had to 

be removed from the file, the multistage validation procedure described above successfully
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recovered a non-contradictory version of the entire trading history. The estimation results 

of this chapter are based on the data for bid-ask spread, market depth, and other variables 

implied by the recreated version of trading history.

2.2 R eview  o f Survival A nalysis

This section presents an overview of survival analysis in the context of limit order market 

applications. For many years the methods of survival analysis were successfully applied 

in biostatistics, biomedicine, engineering, and actuarial science, and relatively recently they 

found numerous applications in labor, development, and environmental economics, as well as 

empirical finance. '1 Survival analysis, which focuses on evaluation of empirical risks in various 

environments, provides natural tools to quantify and analyze the risks faced by traders in 

their decision making. Yet the empirical work on limit orders tha t would extensively use the 

methods of survival analysis is rare, and many theoretical and methodological issues remain 

wide open .5

To illustrate the statistical techniques tha t could be consistently applied in the analysis 

of limit order markets, the Cox proportional hazard model (Cox [26]) appears to be a natural 

starting point. The Cox proportional hazard (CPH) model has its origins in the biostatistics 

literature and provides a simple framework to introduce the basic concepts and definitions 

of survival analysis. Section 2.3 covers a  flexible and parsimonious extension of the CPH 

model for interarrival times of limit and market orders. Conceptually the model of section

2.3 can be considered a broad generalization of the single risk case studied in this section. 

The model also incorporates competing risks of cancellation for the existing limit orders and 

thus exploits the unique information contained in the data.

4 See the monographs by Lancaster [84] mid Cox and Oakes [28], and the papers by Han and Hausman

[60], Meyer [102]. Lunde. Tinnnermann, and Blake [91], Ridder and Tunali [116], and many others.
5Lo. MacKinlay, and Zhang [89]. Bisiere and Karnionka [13], Hautsch [71] me just the few recent papers

consistently applying methods of survival analysis to the empirical analysis of limit order markets.
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2.2.1 Basic Definitions

Let T  denote a  random variable tha t represents the duration between two consecutive pub­

licly observed events in the history of the limit order book. Let f ( t )  and F(t)  denote the 

probability density function (pdf) and cumulative distribution function (cdf) of T.  The 

hazard function of T,  denoted by h(t), is defined as

s ( t - y

where the survivor function S(t) = 1 — F(t)  is the probability tha t the duration of a period 

between two consecutive events will be at least t. The hazard rate is interpreted as the 

instantaneous failure rate of T  a t time t. conditional on the event that no failure has been 

observed through time t. The corresponding cumulative hazard function is defined as
I.

H(t) = I  h{u)du = -  log{S( t- ) ) .

Note tha t the survivor function can be explicitly recovered from the cumulative hazard 

function as the product integral of —H,

S ( t—) =  l i d "  A H d{u}) ■ exp (2 .1 )
i/e[0;0

where A H d{u}  is the jum p of H  a t u, and H c(u) is the continuous part of H.

2.2.2 Estim ation o f the Cox Proportional Hazard M odel for a  Sin­

gle Risk

According to the Cox proportional hazard (CPH) model (Cox and Oakes [28]), the hazard 

function h(t,|z) satisfies the relationship

h{t\z) = h0{t) exp(z'/3), (2 .2 )

where z is a fixed vector of explanatory variables (covariates), /3 is a parameter vector, and 

ho(t) is called the baseline hazard function. The functional form of ho(t) is usually estimated 

nonparametrically.
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Consider estimating the CPH model based on right-censored data. Suppose tha t data  

are available on durations t x. .... indexed by n =  1..... N .  z„ are the values of covariates 

corresponding to duration t„, and <5(;/-) are indicator variables equal to zero if fyj is a censored 

duration and unity if it is not. Assume tha t fyq < ... < t,(j) < ... < f(,/) are the observed 

ordered uncensored duration values for a given event.6 Denote by 7Zq) the risk set associated 

with duration value i.e. the set of all durations equal to or larger than fyj. Then the 

partial likelihood (Cox [27]) is given by

c ^ w - T L  v P-z^ W  <2-3>jJi  £  exp(z;,/3)
/i€TC(j)

where the product is taken over the set of uncensored duration values indexed by j  with 

5U) = h j  = l , . . . . J .

The partial likelihood approach to estimation of the CPH model takes two steps. At 

the first stage, vector (3 is estimated by maximization of the partial likelihood. At the 

second stage, the estimate of /3 is used to construct a nonparametric Breslow estimator of 

the cumulative baseline hazard function Ho(t), which is

£
*i - i

£  exp(z(,/3)
.', e 7z U)

(2.4)

where the external sum is again over the uncensored durations j  characterized by Ŝ j) =  1 . 

The baseline survivor function

S0( t ) = e x p ( - H 0(t)) (2.5)

and the survivor function

log(S(f|z)) =  log(So(t)) exp(z'/3)

are estimated by plugging in the estimator (2.4).

The assumption of no ties is not always satisfied in practice, even in the case considered 

in this chapter, where the durations are measured virtually on a continuous time scale.

6 For clarity of exposition, the treatment of tied observations is delayed to the end of this subsection.
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Suppose there are r r i j uncensored failure events occuring at time t{jy Then the partial 

likelihood (2.3) can be approximated as follows (Breslow [15])

./ >»j exp(z)/3)£n-i(« = n n T. e x p « /3 )

while

and expressions for the remaining estimators follow automatically.

2.3 Sem iparam etric M arkov M odel o f C om peting Risks

Following the general approach of Kalbfleisch and Prentice [82] and the more recent applica­

tion by Bisiere and Karnionka [13] to Paris Bourse trading, the duration between consecutive 

events (arrivals and cancellations of limit orders and arrivals of market orders) and the type 

of the next event can be jointly analyzed conditional on the history of the process. The 

R  types of events (notional risks) shown in Tables 2.1 and 2.2 are identified as arrivals or 

cancellations of different types of orders (market or limit orders, bids or offers) and their 

aggressiveness. The state space includes S  < R  discrete Markov states associated with a 

subset of events th a t can be identified from the public information available on the Reuters 

D2000-2 trading screens. The remaining R  — S  types of events can also affect the future 

state of the market but may not be immediately observed on the trading screens.'

The additional public information closely monitored by market participants includes 

the set of covariates observed on the screens that may include most recent transaction prices, 

the trade direction, the best bid and ask quotes currently available on the market, and the 

foreign exchange demand and supply at these prices. This information is pooled into a vector

7No doubt, traders have access to much larger information sets than publicly displayed on the trading 

screens. The pre-screened prices and quantities based on mutual credit (section 2.1) constitute one of the 

major pieces of private information used by agents in their decision making.
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of random covariates x  which will be referred in the future as the state of the limit order 

book.

The competing risks model belongs to the wide class of finite-state Markov models with 

covariates. In the beginning of every period the market is in a transient state z characterized 

by the type of the last observed event s € S  and the current state of the limit order book 

described by covariates x. If d  is the random vector of indicators of the S  observable events, 

then the transient state can be described as z =  (x'. d ') '. There are R  absorbing states; 

state r = 1 ..... R  corresponds to the type of the next event (change in the limit order book), 

not necessarily publicly observed. Conditional on the state of the vector z, the durations 

associated with R  risks are simultaneously and independently drawn. Only the smallest of 

these R. durations is observed while all the other durations are right-censored. The competing 

risks are characterized by transition intensities h,.(t|z ), r — 1 ,.... R,  which are termed “cause 

specific” , or “notional” hazard functions, and interpreted as the arrival rates of type r events 

given that the current state of the market is z and no observable event occured for t units 

of time .8

It is easy to see how the competing risks model can be immersed in the framework 

of multivariate counting processes (Andersen et al. [8 ]). Consider N  independent ran­

dom vectors of durations n =  1..... N,  and the associated hazard functions

/?,i(i|z),..., hn{t\z).  Assume tha t random variables Tnl. .... T„p are conditionally indepen­

dent given the past history and the current covariates z„. Then consider N  realizations of 

multivariate single-jump counting processes

N „(t) = (N nl(t)..... N„R(t)), n = 1,.... N.

with

N nr{t) = 1 {Tnr =  minT„r/ and T,„. < t}.
r

8 An adjustment of the model to the more realistic situation when the hazards of almost contemporaneous 

events depend on the state of the market; before the earliest of those events occurs is relatively straightforward 

and leads to similar results.
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Every individual counting process Nnr satisfies tlie multiplicative intensity model

A,„.(f|z) =  Y,irhr(t\z), r  =  1..... R ; n  =  1...., N.

where Ynr is an observable indicator that contains information whether or not the market in 

period n  is at risk of experiencing an event of type v.

The pdf of duration T  conditional on the next event being of type r and the current 

covariate vector (partially determined by the previous event as explained above) being equal 

to z, is

On the other hand, by the definition of survivor function,

where h{t]z) and / ( t | z )  are the conditional hazard function and pdf of duration t, whatever 

is the type of event associated with it. Therefore formula (2.6) can be rewritten as follows

where 7r,.(f|z) is the probability that an event of type r occurs exactly t units of time since 

the last event was observed, conditional on covariates z  and given the information tha t some 

event happens at time t a t all. Thus, the probability density function of duration between the 

previous observable event in transient state z and the next event (not necessarily observable) 

is

n
f,.{t\z) =  hr{t.\z)S{t -  |z) =  hr{t\z) Sr>{t -  |z)

/ • ' = !

( 2 .6)

and the associated hazard rate is

R
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Bisiere and Kamionka [13] assumed a flexible parametric Singh-Maddala form for haz­

ard functions hr(t\z) in their model of market and limit order arrivals (they did not consider 

limit order cancellations). The Singh-Maddala form is defined as

h,.{t|z; 9,.) = exp(z'/3,.) • ^  , (2.7)
1 -f- a rt "■

with estimated parameters 9, = (f3'r. a and covariates z. The model considered in this 

chapter is semiparametric in the sense that the parametric form of baseline hazard function 

ho,.(t) is left unspecified. The baseline hazard function is treated instead as an arbitrary 

smooth function of duration, and the infinite dimensional “parameter” to be estimated is 

9 r = (f3'rJ k)l .(•))'.

Assuming there are N  distinct arrival and cancellation events during the trading day, 

the likelihood function is

C(9) = C(0u ...r0 n ) = l [ f r M ^ ; 0 )
n =  1

N
= I I  K„{t„\z„\Or)S{t„ -  |z„;0)

n= i 
R N

= n n \z": Or)s"rs,.(t„ -  |z„ ; er)
c=in=i

= n £,(»,).
r= 1

where

£ r(0r) =  n  K { t n\z ,u9r)SnrSr{t„ ~  \zn]0r),
11=1

t„ is the duration measured from the last observable event s„ associated with the present 

covariate vector z„ =  (x(,,d'fl)', and

t i n r  =

1 if the n th  event is of type r. 

0  otherwise.

The maximum likelihood estimates of parameters 9 =  ( 0 \ . .... 9 r ) are obtained by indepen­

dent maximization of functions £ r(9r) with respect to 9,..
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2.3.1 Cumulative Baseline Hazard Functions

To validate the Singh-Maddala parametric form of duration dependence for the baseline 

hazard functions (Bisiere and Kamionka [13]), this dependence can be estimated nonpara- 

metrically. The notional hazard rate of type r as a function of time since inception (i.e., the 

time measured since the last publicly observed event) is assumed to be of the CPH form

hr{t\z\0r) = h0r{t) exp(z'/3r)

with the unknown parameter 0,. = (/3[.. 1>q,■{■))'■ and the dependence of notional hazards on 

time being determined by functions which are perm itted to vary arbitrarily over the

R  types of risk.

Let < ... <  t(Nr)r denote the N,. distinct ordered durations of type r (r =  1,...,/?), 

and let z ^ y  characterize the covariates for the observed duration t ^ r. The partial likelihood 

function ^
exp(z'(;)r/3,.)R Nr

£ p » r t ( f f l = u A - w  =  n n
r = l j = l

\

E  exp(z (,/3,)
\ n e n t u)r) /

depends on a finite dimensional parameter (3, and the risk set 7Z(t(j)r) is defined as the

set of observed durations that are equal to or larger than t(j)r (c.f. the general definition

of risk set from section 3.2). Insertion of maximum partial likelihood estimators

into the expressions for hazard functions yields the Breslow estimators of cumulative hazard

functions

H 0, { u , p r ) =  J 2  E  e x P (z ' A )
j ■ jh-—1- .»€7l(qj)r)

where m jr is the number of tied durations of type r  at The estimates of survivor

functions Sr(t |z ;/3 r ) are obtained exactly as shown above for the case of a single risk (section

3.2). The estimators of cumulative incidence

I r (£|z) =  P (Tr < t  and Tr =  ;min Trf|z) (2 .8 )
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t n
//,,.(u.|z; 6,.) J J  S,.i(u\z;Or>)du 

;•'=1

=  I  hr(u\z; 6,.)S{u\z; 0)du 
J o

can be obtained by inserting into (2.8) the appropriate estimators for S  and

2.3.2 The Baseline Hazard Functions

The baseline hazard functions har{t) for competing risks r — 1..... R  are estimated from 

the cumulative baseline hazard estimators H 0r by smoothing their increments. A natural 

estimator of ho,.{t) can be defined as

hor(t) =  Y  [ lC r dH0r(v , P r). (2.9)

where /Cr is a kernel function and br is a bandwidth parameter that both may depend on the 

type of risk. If f(i),. < ... < t(j)r < ... denote the successive jum p times of counting process 

N.r = Ni,. +  ... +  N n ,., then the equivalent definition of //nr(0  would be

hor(t) = j ; E ICr ( ^ )  &HOr ( t j , 0 r), (2 .1 0 )

tha t is, hor(t) is weighted mean of the increments of the Breslow estimator H()r (see Chapter 

3 for details).

Andersen et al. ([8 ], section IV.2) show that the kernel function estimator (2.10) of 

h0,.(t) is consistent provided the bandwidth br tends to zero sufficiently slowly as the total 

number of observations increases. In order to pick an optimal bandwidth, some measure of 

global performance of the kernel function estimator has to be selected. A popular criterion 

is the cross-validation function (CV) which is defined by

cv(M = £  (aH0r( t j M  -  T d i t j j )2 • (2.ii)
:i

where (f /) is the leave-one-out estimator evaluated at the jump point tj,

= Tr ^ K “ ( ^ T t )
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Minimization of CV(6,.) over a  grid of bandwidtlis usually gives reasonable results and is 

asymptotically optimal in terms of a quadratic error measure under additional assumptions 

(Hjirdle [63], section 5.1).

Unfortunately, the distribution of the jum p durations tj is highly positively skewed, 

and further modifications of the method are needed. One practical way to proceed would 

be an automatic local bandwidth selection such as Friedman’s "supersmoother” (Hjirdle 

[63], section 5.3) which essentially performs a “local cross-validation” procedure for k-NN 

estimators combined with consecutive spline smoothing. Another option to be considered is a 

modification of the approach of Wand et al. [125] based on the deformation of duration scale. 

The main idea of this alternative approach can be outlined as follows. F irst, the problem is 

reformulated in terms of log-transformed data. Then the standard (global) cross-validation 

criterion (2 .1 1 ) is applied to the new data, and finally the inverse deformation of duration 

back to the original scale is performed. The log-transform of duration scale removes the 

excessive skewness in the sample distribution of jum p points and makes the sample design 

more balanced and closer to normal. A family of transforms alternative to the log such 

as the Box-Cox transformation might be considered in this approach. The cross-validation 

can be performed jointly over the kernel bandwidth parameter and the param eter of the 

transformation family.

An alternative to the kernel estimator (2.9) is

where t (1)r < ... < £(/>,. < ... < t (jk)r are the ordered jum p times of process N.r(-), and 

is the number of events of type r  th a t occured at or prior to time t,

is the multiplicity of type r  events a t point t(j)r, and A t(j)r = t y y  — is the interval

between consecutive jumps of process N.r. The motivation for (2.12) comes from a similar

"€7J.(t(j),.)

(2 .12)

mjr = A N.r{tu)r) = N.,.{tU)r) -  N.r{tu_i)r)
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estimator in a marker dependent hazard model investigated by Nielsen and Linton [108]. Yet

another option is to take the kernel and the bandwidth parameter independent of the type 

of risk, and estimate the baseline hazards by

which is analogous to (2 .1 2 ) but the summation in the numerator and denominator is over 

the jumps t , ^  < ... < t(j) < ... <  /(./) that occur in the sample for all types of risk,

is the multiplicity of type r  events at point ty),  and Aiyj =  fyj) — fyj-i) is the interval between 

the consecutive jum p points of vector process N .(t) = (N.i(t),.... iV./j(t)).

The asymptotic properties of estimators (2.12) and (2.13) will be investigated in the

applied in the next section to estimate the baseline hazard functions of competing risks.

2.4 E stim ation  R esu lts

For a given type of event r, the components of vector z„ =  (x(,, d j j ' (n =  1..... N r) are 

associated with the following characteristics of the limit order book and major trading events:

1 . indicator of the direction of the most recent transaction (1  if seller initiated, — 1 if 

buyer initiated);

2 . market spread (the difference between the best ask and bid quotes), in ticks;

3. ex post profitability of the last trade, or positioning bias, defined as the distance be­

tween the price of the last transaction and the current bid-ask midquote, in ticks, for 

buyer-initiated events, and the negative of the same quantity, for seller-initiated events;

(2.13)

mJr =  A N.,.(tu)) = N.r(t.U]) -  A M V b )

next chapter of this dissertation. A nearest neighbor modification of these estimators is

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

4. natural log of the depth at the offered touch (lowest ask price of the market), in $ mln.;

5 . natural log of the depth at the bid touch (highest bid price of the market), in $ mln.;

6 . vector of indicator variables d„ =  (rf;il, dns)' for the present state of the market s 

(id„si =  1 for s' =  .s. d„si =  0  otherwise).

The components of x„ incorporate the information available on the screen which is

closely monitored by traders. Although the Markov state variable s € S  can be more difficult

to follow on the trading screens, it can be usually derived from the movements of market

quotes and quantities as explained in the next paragraph. The definitions of covariates x„

describing the state of the limit order book are given in Tables 2.3 and 2.4. The direction of

prior trade indicator is used to identify the asymmetry in the impact of completed transactions

on hazard rates as opposed to the asymmetry in the impact of aggressive quotes captured

by indicator variables of vector d „ , as the latter only indicate the intention to trade. There

is a strong evidence that the buy-sell indicator has a high predictive power for the direction

of future transactions on the foreign exchange market (Goodhart et al. [54], Acar [1 ]) and

on the stock markets (Hausman et al,. [70], Lo et a,I. [89], Huang and Stoll [75]). The

size of market bid-ask spread is often identified with an intuitive notion of illiquidity in the

market microstructure literature, and is expected to have a strong impact on the types of

submitted orders. The positioning bias, or ex post profitability of the prior trade, can be

interpreted as the profit accrued to the trader who was an aggressor in the last transaction

(the counterparty initiating the trade) if she liquidates her position a t the mid-point of the

current bid-ask spread .9 Finally, the two market depth variables represent another dimension

of liquidity, viz. how many units of foreign exchange can be bought (or sold) at the current

ask (or bid) market prices. The depth variables are also expected to be significant for the

notional risks of cancellation events as the risk of cancellation should be related to the total

9This interpretation of positioning bias disregards the transaction cost, which is always incurred by 

aggressor according to the trading protocol of the D2000-2 trading system.
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number of active limit orders, and the latter number is expected to be correlated with the 

quoted depth at the best market price. 10

The taxonomy of limit orders in this chapter is very similar to the one introduced 

by Biais et al. [12], which appeared in subsequent papers on limit orders with minor 

modifications. 11 We specify R =  2 2  event types and select S  = 14 state variables corre­

sponding to publicly observable types of events. The definitions of events are given in Tables 

2 .1  and 2 .2 .

Stars and double stars next to the type of event indicate the publicly observable changes 

in the limit order book. Double stars indicate the events that can potentially trigger an 

immediate trade execution (note tha t transactions will not occur automatically following an 

aggressive order arrival because of potential credit constraints, as explained in section 2 .1 ). 

Whenever an event associated with a change in quoted bid or ask market prices or quantities 

occurs, the identity of discrete Markov state  s = 1 .....5  changes. 12 However, the events 

associated with changes of the suboptimal quotes and quantities available at those prices are 

not included in the public information about the limit order book, even though those events 

could be observed by some traders. Those events do not change the state of the market and 

do not reset the “internal clock” of the “race” among the risks, according to the version of 

the model considered in this chapter. Thus all types of events except A6 , A7, A10, A ll,  B6 , 

B7, BIO, and B ll  correspond to distinct observable Markov states.

10The determinants of limit order submision strategies are briefly discussed in O'Hara [109] and Goodhart 

and O’Hara [52]. The main theoretical contributions on the topic are Chakravarty and Holden [20], and 

Parlour [112], Biais et al. [12], Handa and Schwartz [61]. Harris and Hasbrouck [65]. and Brown et al. [17]

contain interesting empirical results.
11 Griffiths et al. [58]. Bisiere and Kamionka [13], and Al-Suhaibani and Kryzanowski [6] are just a few 

examples from the recent literature. Minor variations in the classification of orders depend primarily on the

data availability as well as the main object of paper.
12Note that the state of the same typeis also assumed to have a distinct identity, so the new period can

start alter transition s' -*  s.
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2.4.1 The Fully Parametric M odel

First, the fully parametric model (2.7) by Bisiere and Kamionka [13] is estim ated by the 

maximum likelihood procedure. The component of log-likelihood corresponding to the events 

of type r,

logC,.(er) = - lo g tM g z ,,;# ,.) )  +  log(Sr (f„|z„;0,.))] (2.14)
n=i

=  Y  +  !og7r +  (7r -  1) logt„ -  lo g (l +
n=i

is maximized with respect to 6r = ((3'r. 7 ,.. a:,.)' given the vectors of Markov state  indicators 

d„ and covariates x„, the durations t„ from prior observed events leading to the present 

s ta te  6’,,, and indicators S„r showing that the n th  realized risk is of type r (n =  1 ..... N).  

The fully parametric maximum likelihood (2.14) estimates for the events recorded between 

6  a.m. and 5 p.m. GMT 011 the week of October 6-10. 1997, are reported in Tables 2.5 

and 2.6 . 13 The estimates are accompanied by the ^-statistics calculated from the “robust” 

variance-covariance matrix of coefficients.

Several patterns can be observed from this empirical exercise. First, parameters 7 r are 

always substantially larger than unity. The estimates of parameters ay (not shown in Tables 

2.5 and 2.6) are always positive and usually quite large, leading to overwhelming rejection 

of the Weibull distribution hypothesis ay =  0.

13The overnight trading hours (5 p.m. to 6 a.m. GMT) characterized by low market liquidity and 

high and unstable values of the bid-ask spread cover less than 5% of all events and are excluded from the 

analysis. Apparently, the standard competing risks methodology can be applied to the analysis of such an 

off-hours market with minor modifications. However, since the quotes and trades 011 the routinely illiquid 

Reuters D2000-2 system in the overnight hours de facto represent a separate trading regime, the estimates 

of competing risks covering this period are likely to be very different from those reported in the paper for 

the high-activity hours.
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Second, the combination of the sign and ex post profitability of the prior transaction is 

always statistically significant, which indicates the important role of the information about 

the last trade reported on the D2000-2 trading screens. The influence of the Side variable is 

almost uniformly positive for seller-initiated activity and negative for buyer-initiated activity. 

The coefficients of the Slippage variable are large and positive for the risk of aggressive limit 

order arrivals (types A l, B l, A3, and B3, according to the classification of Tables 2.1 and

2.2), slightly smaller for market order arrivals (types A2 and B2), and much smaller but still 

significant for the arrivals of limit orders improving the market price within the spread (types 

A4 and B4). The Slippage coefficients become significantly negative for cautious limit order 

arrivals and all cancellation events. This offers strong support for clustering of quoting and 

trading activity 011 the ask and bid sides of the limit order book, and suggests the important 

role of the information transm itted by the last transaction event for the direction of this 

clustering.

Third, the Spread variable is always statistically significant and has the strongest in­

fluence on the hazard rates of most aggressive orders. Almost all activity in the limit order 

book is negatively related to the size of the market bid-ask spread. Quite naturally, the only 

exception is the odds of limit order arrivals improving the bid-ask spread without the risk 

of immediate transaction, i.e., events of types A4 and B4.

Finally, the dependence of hazard functions on the quoted depth variables is statisti­

cally significant for most types of risks. In some cases the significance of these coefficients 

can be partially explained by the event classification biases. Most obvious of those biases 

involve the definition of aggressive vs. small limit orders hitting on or taking out the liq­

uidity available 011 the opposite side of the book (type Al vs. A3 and B l vs. B3) and the 

definition of full vs. partial cancellation of liquidity a t the touch (type A8  vs. A9 and B8  

vs. B9). One obvious pattern apparently unrelated to the event classification scheme of this 

chapter is the positive influence of market depth on the odds of price improvement on the 

same side of the limit order book. The mechanism behind this pattern  is the competition for 

time priority among traders. Large quoted depth implies larger execution lags and forces the
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submission of orders for immediate execution or orders for delayed execution a t the prices 

which are more attractive to potential counterparties on the opposite side of the market. 

On the other hand, small quoted depth at the best market price gives stronger incentive 

to add liquidity a t the same tick and get the price advantage if the limit order is hit (or 

taken) by an aggressor from the opposite side of the market. Another observed empirical 

regularity is some reluctance of traders to submit market orders (that is, the orders almost 

guaranteed to be traded, events of types A2 and B2) when the quoted depth on the opposite 

side of the market is high. A potential link between this effect and the information about 

the future adverse price movements that may be transm itted by the market depth quoted 

on the opposite side requires further investigation.

Note that the reported covariate coefficients of the competing risks should be treated 

with caution as the Singh-Maddala parametric form (2.7) might be a poor approximation for 

the hazard functions of notional risks. Some suggestive evidence of such a misspecification 

reported in the next subsection will be followed by a more careful analysis in subsection

2.4.3.

2.4.2 Covariates in the Semiparametric M odel

Table 2.7 reports the estimates of the semiparametric CPH competing risks of seller-initiated 

events. Table 2.8 reports similar estimates for buyer-initiated events. Entries of the table 

contain the estimated coefficients at the covariates accompanied by their robust f-statistics 

(Lin and Wei [87]) for the covariates characterizing the state of the limit order book. Signif­

icant covariate coefficients are marked by stars.

Most qualitative results are similar to those obtained from the fully parametric model 

and can be related to empirical facts on limit order dynamics reported in the literature. 

In particular, the hazards of arrival for market and aggressive limit orders on both sides of 

the book are much higher if the previous transaction was initiated by an order of similar 

type (Side effect). Independently, these hazard rates increase even more if the price of the
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last transaction relative to the current bid-ask midquote is high for buyer-initiated and low 

for seller-initiated transactions (Slippage effect). Similar, but less pronounced effects are 

observed for arrivals of quotes that improve the current market prices without immediate 

execution (events of types A4 and B4).

Large quantities available at the best market price substantially increase the risk that 

the next order will either improve this quote without transaction or trigger an immediate 

execution. This is a direct consequence of competition for the priority in the limit order book 

discussed in the previous subsection; the price improvement for a potential counterparty on 

the opposite side of the limit order book is most likely to occur when the competition among 

the limit order traders providing the liquidity is high. On the other hand, traders appear 

to act more cautiously if they consider the decision to submit a market order during the 

periods when substantial liquidity is available from the opposite side of the book.

The significance of Spread variable for all notional risks confirms the important role 

played by the market bid-ask spread for price discovery on the electronically brokered seg­

ment of the market. In fact, large bid-ask spreads have a strong negative effect for the 

general level of market activity. The only type of risk reacting positively to high bid-ask 

spreads is the hazard of price improvement on one or the other side of the market. Still, 

this increase is not as dramatic as it should have been to compensate for the reduction of 

the other notional risks. The liquidity is restored after a relatively long period characterized 

by relatively wide bid-ask spreads and slightly higher chances of arrival for price improving 

offers and bids.

The only substantial difference between the estimates of the two models is observed for 

the coefficients characterizing the market depth effect on the competing risks. Most depth 

coefficients in the fully parametric model are substantially lower than  the corresponding 

coefficients in the semiparametric CPH model. In particular, almost all coefficients charac­

terizing the influence of quantities bid or offered on the opposite side of the market (i.e., Qbid 

for seller-initiated events and for buyer-initiated events) are insignificant in the semi­

parametric model, although they are significantly negative in the fully parametric model.
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The same side market depth effects in the two models are also drastically different for the 

odds of quantity improvements a t the touch that occur without price improvement (events 

of types A5 and B5). While the fully parametric model reports a significant negative effect 

of the same side depth, which might be interpreted as the evidence of switching to  more 

aggressive limit orders when the competition among limit order traders for time priority is 

high, the same coefficients in the semiparametric CPH model are positive and very signifi­

cant. If traders interpret the large liquidity observed on the same side of the market as an 

encouraging sign of price stabilization at the given quote, they would be willing to supply 

more liquidity and wait longer to execute orders a t the same price. Such a sharp difference 

between the estimates of depth coefficients in the two models appears puzzling, especially 

considering the remarkable similarity of all other coefficients. The evidence reported in 

the next subsection suggests one possible explanation for the systematic negative bias of the 

depth coefficients in the parametric model -  misspecification of the baseline hazard functions 

for competing risks.

2.4.3 The Estim ates o f Baseline Hazard Functions

A version of the /.'.-nearest neighbor (Z-NN) estimator (2.13) is employed for the estimation of 

baseline hazards . 14 Although no asymptotic theory has been developed for Z-NN estimators 

of hazard functions, the nearest neighbor design is preferred as it offers a simple solution to 

the problem of bandwidth selection for every duration . 15 The only parameter tha t has to 

be selected in conjunction with the weighting scheme is the number of neighbors k  as the 

percentage of the total number of jumps .7. The values of k/.J  in the range between 5% and

14 The alternative hazard estimators (2.10) and (2.12) have been calculated but are not included in the 

present paper. The qualitative properties of estimates based on (2.10) and (2.12) are similar to those reported 

tor estimator (2.13).
15The k-NN estimation was also the preferred approach in Engle [39] to the nonparametric hazard function 

estimation for interarrival times of stock quotes. There was no discussion of confidence intervals for the 

estimate of hazard function reported in that paper.
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50% have been tried, but only results for the subjective choice of k / J  — 0 .2  are reported. 

To reduce the kernel truncation biases tha t arise near the boundaries of the duration range, 

the number of neighbors covered by the support of the kernel progressively decreases from 

k «  0 .2 .7  to k =  1 as the duration value a t which the hazard function is estimated moves 

from the 10% quantile to the minimum of the duration sample and from the 90% quantile 

to the maximum of the sample.

As for the weighting schemes, the standard choices are analogous to the case of con­

stant bandwidth and include uniform, triangular, Epanechnikov, and quartic kernels. The 

uniform weights tend to produce extremely rough curves, even for reasonably large values 

of k /J .  The Epanechnikov weights substantially reduce the degree of “wiggliness” and sim­

plify integration, a t the same time putting more weight on the duration values close to the 

duration of interest. The quartic kernel weights

_  j' = - [ k /2 ] .......[k/2\.
= { v '  (2.i5)

otherwise.

used in this chapter produce the estimates that are visually indistinguishable from smooth 

curves over a wide range of durations excluding the “thin sample design” area in the right 

tail of the sample distribution. The normalizing constant in the weighting scheme is not 

important, since the k-NN analogue of estimator (2.13) is defined as a ratio of two weighted 

averages,

£ Wk(j, f)AN.r(tU'))
/ = 1

and

t  WkU,f)  £  exp(z'„3r)A<(/q.
i'= l n€7£(/.(j/))

The estimated baseline hazard functions of publicly observable seller- and buyer- 

initiated events are plotted for quartic weights and the nearest neighbor “bandwidth” ratio 

k / J  = 0.2, respectively, in Figures 2.2 and 2.3. 16 To facilitate the comparison of different

16The baseline hazard estimates for the events which are not publicly observable according to the classifi-
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curves, all baseline hazard functions are normalized at the origin so that

lim hl*[t) = 1 .*o u

The legends of the plots show the types of risks in the order of their appearance on the 

graphs, from top to bottom.

The graphs demonstrate the considerable variation in the shapes of the baseline hazard 

functions across the types of notional risks. This variation is unlikely to be reduced to a 

single form, an implicit assumption made about the baseline hazards in more conventional 

models of high-frequency dynamics. The hazard rates of most aggressive orders (A l, A2, Bl, 

and B2) tend to decline faster over the first few seconds after the previous market event. The 

hazard functions for the risk of complete removal of liquidity at the current touch (types A8  

and B8 ) have a double-humped shape, with the first local maximum attained 0.25 seconds 

after the previous event and the second (global) maximum attained around 3.5 seconds after 

the previous event. For the remaining hazard functions, there is also a tendency to decline 

with the duration, but not as pronounced as for the baseline hazards of most aggressive limit 

orders.

The plots of hazard rates in Figures 2 .2  and 2.3 do not offer support to the hypothesis

of inverse U-shaped baseline hazards, the pattern commonly accepted when the baseline

hazard functions of interarrival times and other risks are fitted parametrically, for example,

in the parametric specification (2.7) by Bisiere and Kainionka [13] studied above, or in a

conceptually similar model by Hautsch [71] for the time intervals between LIFFE Bund

futures transactions. Therefore, the duration dependence of hazard functions for individual

risks is unlikely to be well explained by the gamma distributed individual heterogeneity

multiplier, the model which is usually applied to justify the Singh-Maddala form (2.7) of the

observed mixed hazard functions (Addison and Portugal [2 ]). On the other hand, despite the

failure of the Singh-Maddala parametric form to capture the shapes of the baseline hazards 
cation of this paper (types AC. A7. A10, A ll .  B6. B7. BIO. and B l l  in Tables 2.1 and 2.2) tire omitted from 

the graphs. All those hazard rates demonstrate a tendency for slow decline with the duration time, and look 

very similar to the baseline hazards of the events of types A4 and B4.
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implied by the semiparametric CPH model for notional risks, most param eter estimates in 

the two models appear consistent with each other.

To illustrate the misspecification of hazard functions imposed by form (2.7), Figures 

2.4 and 2.5 report the estimated baseline hazard functions implied by the Singh-Maddala 

functional form for publicly observed seller- and buyer-initiated events and obtained by 

substitution of coefficients a r and 7 ,. in equation (2.7) evaluated at z =  0. Apparently, the 

plots implied by the parametric model (2.7) are do not to capture the salient features of 

the plots reported in Figures 2.2 and 2.3 for the more flexible semiparametric CPH model 

specification. In particular, the peculiar bimodal structure of baseline hazard functions for 

cancellation events AS and B8  is completely missing from the plots of Figures 2.4 and 2.5. 

Moreover, the parametric model is picking up the narrow left spikes which are less essential 

for close approximation of the general tendency, while missing completely the major maxima 

to the right. As for the other baseline hazards, their estimates from the parametric model 

correctly pick up the general decreasing trend in the nonparametric hazard rates but appear 

to decline too fast, at least for the first five seconds since the last observed event.

The negative biases of market depth coefficients in Tables 2.5 and 2.6 are likely to 

originate from the misspecification described above. High levels of market depth are gen­

erally associated with the periods of active trading, characterized by relatively high hazard 

rates and small observed intervals between consecutive events. Conversely, longer observed 

durations and lower hazard rates are occur more frequently when the market depth is below 

average. If the estimated hazards implied by the Singh-Maddala param etric form decline 

faster than the true hazard functions over the most informative range of durations (which 

is, presumably, the first few seconds after the observed events), the specification errors could 

be reduced if the smaller coefficients were assigned to the covariates tha t are positively cor­

related with the hazard rates. In particular, this intuition predicts the negative biases for 

most market depth coefficients in the fully parametric model, the kind of pattern confirmed 

by Tables 2.7-2.8 .

Finally, we give a simple example of the evolution of hazard rates for notional risks
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estimated from the CPH model by the A:-NN kernel methods as described in the beginning 

of this subsection. Figures 2 . 6  and 2.7 display the estimates based on the quartic kernel 

weighting scheme. The nearest neighbor “bandwidth” ratio k / J  is taken equal to  0.05 in 

both figures. The following hypothetical scenario has been selected. Suppose the limit order 

book is characterized by a relatively low but positive bid-ask spread (Spread =  2 ), a large 

quoted demand for USD at the current best bid (Qbid =  10) and a small supply of USD 

at the current best offer price (Qask =  2). Moreover, the most recently recorded trade was 

a buyer-initiated transaction a t the current miclquote of the bid-ask spread (Side =  — 1 , 

Slippage =  0) and the last event that occured on the market is complete cancellation of 

liquidity at the previous best market price on the bid side, i.e., the bid price deterioration 

event (B8 ).

The plots displayed in both figures are very similar and generic for the evolutions of 

hazard rates observed under several alternative scenarios. In the scenario described above, 

the odds that the next market event will be buyer-initiated are almost twice as high as the 

odds of a seller-initiated event; this asymmetry is primarily determined by the direction of 

the last trade. Even more disparity is observed between the odds of buyer- vs. seller-initiated 

aggressive limit and market orders; much of this imbalance is also explained by the sign of 

the last trade and the quoted market depth. Finally, the larger is the time elapsed after the 

last event, the smaller are the odds that the next event will be a transaction and the larger 

are the relative chances to observe a submission or cancellation of a limit order at the touch 

or just within the bid-ask spread.

2.5 C onclusion

The main contribution of this chapter can be summarized as follows. First, the unified com­

peting risks framework is proposed for the analysis of multivariate marked point processes 

in continuous time. The model has an attractive behavioral interpretation and applies nat­

urally to the irregularly spaced observations frequently encountered in applied finance and
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economics. The asymptotic theory developed by Andersen et al. [8 ] for counting processes 

can be adopted with minimal adjustments to conduct the inference for competing risks. The 

model of this chapter represents a semiparametric alternative to the fully parametric model 

of limit order trading by Bisiere and Kamionka [13] and can be applied more generally with­

out imposing unjustified restrictions on the form of the baseline hazards, the practice leading 

to potential biases of the estimated covariate effects and incorrect inferences.

The model is applied to analyze the timing and interaction between quotes and trades 

in the Reuters D2000-2 electronic brokerage system, the segment of the foreign exchange 

market tha t has been rarely studied before, despite its rapid development in the 1990s. The 

major stylized facts about the high-frequency foreign exchange dynamics that have been 

confirmed in the application of the model to empirical data  include:

• clustering of market activity on the directional characteristics of last trade ( “buyer or 

seller pressure”)

• considerable sensitivity of the order submission strategies employed by traders to the 

state of the limit order book and the quoting and trading history.

These conclusions will be reaffirmed and analyzed more thoroughly in Chapter 4 where 

the original model is further extended in several directions.
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2.6 A ppendix: Tables and Graphs

Table 2.1: Arrivals and cancellations of market and limit orders (offers) to sell US dollars

Type
(i)

Event (ask side) 
(2)

Quoted price change 
(3)

Quoted depth change 
(4)

Al** Offer at P* < Ph A P h < 0, A P„ < 0 Qi, changes, Qa may not

A2** Market sell order arrival A Pi, <  0 Qi, changes to 2nd best

A3** Offer at P* =  Ptl No price effect AQh < 0

A4* Offer at P* <  P„ A P„ < 0 Qa =  Q*

A5* Offer at P* =  P„ No price effect AQa > 0

A6 Offer at P„ < P* <  P„ +  2 No price effect No quantity effect

A7 Offer at P* > P„ + 3 No price effect No quantity effect

AS* Cancel all at P* =  P„ AP„ > 0 Qa changes to 2nd best

A9* Cancel part at P* =  P„ No price effect AQa < 0 a t the touch

A10 Cancel at P„ <  P* < P„ +  2 No price effect No quantity effect

A ll Cancel at P* >  P„ +  3 No price effect No quantity effect

Table 2.1 summarizes the sell-side event classification scheme introduced in this chapter. 
Events are identified by the changes in the limit order book. The rows of Table 2.1 correspond to 
the eleven distinct types of events associated with sellers' activity and termed “ask-side events.” 
The type of event determined by a combination of order type (market or limit order), character 
of activity (submission or cancellation of a limit order), and by the arriving (or cancelled) limit 
order price P* relative to the prevailing best bid and ask quotes Pbki and Pask (column 2). The 
consequences for the best bid and ask prices and for the liquidity at these prices are summarized 
in columns 3 and 4. The types of events marked in column 1 by single and double stars can 
always be detected on the trading screens. The event types marked by the double stars typically 
trigger transactions at prices. The unmarked event types associated with limit order arrivals or 
cancellations at suboptimal prices cannot be identified from the common part of the D2000-2 
trading screens.
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Table 2.2: Arrivals and cancellations of market and limit orders (bids) to purchase US dollars

Type
(i)

Event (bid side) 
(2)

Quoted pi'ice change 
(3)

Quoted depth change 
(4)

Bl** Bid at P* > Pa AP„ > 0, A Ph > 0 Q„ changes, Qi, may not

B2** Market buy order arrival A P„ > 0 Qa changes to 2 nd best

B3** Bid at P* = P„ No price effect A Qa < o

B4* Bid a t P* > Pi, A Ph > 0 Qi, = Q*

B5* Bid at P* = Pi, No price effect A Qh > 0

B6 Bid a t Pb -  2  <  P* < Pi, No price effect No quantity effect

B7 Bid a t P* < Pi, — 3 No price effect No quantity effect

B8 * Cancel all at P* = Pi, A Pb < 0 Qi, changes to 2nd best

B9* Cancel part at P* = P, No price effect A Qi, < 0  at the touch

BIO Cancel at Pb — 2 < P* < Pi, No price effect No quantity effect

B ll Cancel at P* < Pi,— 3 No price effect No quantity effect

Table 2 .2  summarizes the buy-side event classification scheme introduced in this chapter. 
Events are identified by the changes in the limit order book. The rows of Table 2.2 correspond to 
the eleven distinct types of events associated with buyers’ activity and termed “bid-side events.” 
The type of event determined by a combination of order type (market or limit order), character 
of activity (submission or cancellation of a limit order), and by the arriving (or cancelled) limit 
order price P* relative to the prevailing best bid and ask quotes Ptml and P,vsu (column 2 ). The 
consequences for the best bid and ask prices and for the liquidity at these prices are summarized 
in columns 3 and 4. The types of events marked in column 1 by single and double stars can 
always be detected on the trading screens. The event types marked by the double stars typically 
trigger transactions at prices. The unmarked event types associated with limit order arrivals or 
cancellations at suboptimal prices cannot be identified from the common part of the D2000-2 
trading screens.
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Table 2.3: Covariates describing the state of the limit order book and the trading history

Covariate Definition

Side 1 if prior trade seller-initiated, - 1  if buyer-initiated

Spread Difference between the best market ask and bid quotes

Profit ex post Ex-post profitability of prior transaction (see the text)

log(Q ask) Natural log of the depth at the lowest ask quote

log(Q bid) Natural log of the depth at the lowest bid quote

Table 2.3 on this page describes the list of covariates x. while Table 2.4 on the next page 
describes the list of covariates d  in the fully parametric and semiparametric Cox proportional 
hazard (CPH) specifications hr( t |z) =  /t0r (f) exp(z'/3r). z =  (x '.d ') ' for the competing risks 
r — 1..... 7?. The components of vector x  incorporate the information about the limit order book 
and the past transactions, which is available from the screens prior to the events. Components of 
vector d  are indicator variables taking values 0  or 1 , depending on the type s =  1 ..... S  {S =  14) 
of event that has been last publicly observed on the market.
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Table 2.4: Covariates describing the recent history of the limit order book

State dummy cls Definitions of Markov states $ =  1 . S  (S' =  14)

Last event =  A9: partial cancellation of the lowest offer

do =  r/[A8] Last event =  AS: full cancellation of the lowest offer

</•{ =  ri [A5] Last event =  A5: arrival of limit order to sell at the lowest offer

d | =  rf[A4] Last event =  A4: arrival of limit order to sell within spread

dr, =
Last event =  A3: arrival of sell limit order at the highest 

bid. when size of the new limit order does not exceed size of bid

da =  d[A2| Last event =  A2 : arrival of market sell order

d~ =  d [A l|
Last event =  A l: arrival of sell limit order at the highest bid 

when size exceeds the bid size, or arrival of sell order below bid

ds =  d[BL|
Last event =  Bl: arrival of buy limit order at the lowest ask 

when size exceeds the ask size, or arrival of buy order above ask

d<> =  r/[B2| Last event =  B2: arrival of market buy order

d\0 =  d[B3]
Last event =  B3: arrival of buy limit order at the lowest 

ask. when size of the new limit order does not exceed size of ask

dn = cl\ B41 Last event =  B4: arrival of limit order to buy within spread

Last event =  B5: arrival of limit order to buy at the highest bid

Last event =  B8 : full cancellation of the highest bid

— r/feo] Last event =  B9: partial cancellation of the highest bid
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Table 2.5: Fully parametric maximum likelihood estimates for competing risks of seller-

initiated events in the limit order book (Markov state coefficients omitted)

Risk Type (r) Side Spread Slippage log(Qask) log(Qbid) 7 r ~  1

Al: Hit by Aggr.Ask -0.186*
( -1 0 .9 8 )

-0.352*
( —82.20)

0.070*
(15.97)

0.172*
(8.30)

-0.833*
( -3 0 .0 0 )

0.83*
(28.01)

A2: Hit by Market 0.242*
(20.40)

—0.333*
( -3 3 .3 0 )

0.059*
(12.41)

0.065*
(5.44)

-0.162*
(-2 3 .3 3 )

0.76*
(36.30)

A3: Hit by Small Ask 0.131*
(9.28)

-0.350*
( - 2 2 .0 0 )

0.072*
(14.04)

0.092*
(5.07)

0.235*
(12.29)

1.21*
(37.50)

A4: Offer within Spread 0.066*
(9-15)

0.048*
(18.28)

0.023*
(0.38)

0.156*
(12.73)

-0.121*
(-1 1 .0 1 )

1 .4 4 *
(47.97)

A5: Offer at the Touch 0.051*
(0.10)

-0.083*
( —14.54)

-0.107*
( -1 8 .1 6 )

-0.083*
( - 7 .3 5 )

-0.113*
(-1 0 .4 7 )

0.96*
(37.14)

A6: Offer above Touch 0.001
(0.08)

—0.274*
( - 2 7 .3 2 )

-0.169*
(-1 9 .1 1 )

-0.359*
( -2 7 .0 2 )

-0.083*
( - 7 .0 8 )

0.49*
(19.02)

A7: Offer Far from Touch -0.026*
( - 2 .9 5 )

-0.099*
( - 1 2 .1 1 )

-0.130*
(-1 9 .4 4 )

-0.251*
( —10.22)

-0.137*
( -1 1 .4 8 )

0.70*
(24.68)

A8: Full Canc.Ask Touch 0.218*
(15.02)

-0.176*
( -1 2 .7 4 )

-0.182*
( -1 0 .1 0 )

-0.479*
( -3 2 .4 9 )

-0.119*
( - 5 .8 7 )

1.38*
(23.92)

A9: Part.Canc.Ask Touch 0.124*
(9.92)

-0.045*
( - 7 .4 3 )

-0.097*
( - 9 .7 3 )

0.640*
(38.30)

-0.090*
( - 6 .6 1 )

1.73*
(49.69)

A10: Canc.above Touch 0.211*
(19.18)

-0.231*
( - 3 1 .2 0 )

-0.169*
( -2 0 .3 2 )

-0.176*
( -1 2 .8 0 )

-0.130*
(-1 0 .0 7 )

0.71*
(23.05)

A ll: Cane.Far from Touch 0.233*
(19.94)

-0.103*
( - 1 2 .8 7 )

-0.089*
( - 1 0 .9 5 )

-0.097*
( - 7 .7 1 )

-0.140*
( -1 1 .1 7 )

0.83*
(31.88)

Table 2.5 reports the fully parametric maximum likelihood estimates (/9r. 7 ,-)' of competing 
risks r  =  1,.... R, based on the sample of ask-side events between 6  a.m. and 5 p.m. GMT on the 
week of October 6-10. 1997. The baseline hazard functions /in,.(t) are specified using a biparametric
Singh-Maddala form ho,.(t) =  i+~]nr ■ The estimated coefficients at the Markov state covariates 
d. omitted for brevity, are available from the author upon request. The f-statistics reported in
parentheses for vectors (/3 r . 7 r — 1 )' are based on the robust (“sandwich-type”) estimates of the 
variance-covariance matrix of the coefficients. Entries of the table are marked by stars, whenever 
the estimated coefficients are statistically significant at the 95% level of confidence.
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Table 2.6: Fully parametric maximum likelihood estimates for competing risks of buyer-

initiated events in the limit order book (Markov state coefficients omitted)

Risk Type (r) Side Spread Slippage log(Qa.sk) log(Qbid) 7  r  -  1

B l: Taken by Aggr.Bid -0.111* 
( - 5 .  53)

-0.368*
(-2 1 .1 5 )

0 .2 2 2 *
(19 .67)

- 0 .8 6 6 *
( - 3 3 .8 9 )

0.155*
(7.13)

0.91*
(30 .51)

B2: Taken by Market -0.181* 
( — 14.84)

-0.367*
( -3 2 .8 0 )

0.126*
(13 .90)

-0.160*
( - 1 3 .8 0 )

0.046*
(4.17)

0.73*
(35 .23)

B3: Taken by Small Bid —0.037*
( - 2 .0 5 )

-0.412*
( -2 7 .5 0 )

0.181*
(17 .08)

0.192*
(10.89)

0.107*
(5.72)

1.29*
(32 .96)

B4: Bid within Spread -0.044*
( - 4 .5 9 )

0.060*
(20.74)

0.050*
(14 .04)

-0.124*
( - 1 0 .3 7 )

0.137*
(11.70)

1.48*
(61 .16)

B5: Bid at the Touch - 0 .0 1 2
( - 1 .5 0 )

-0.069*
( — 12.G0)

—0.04S* 
( —10.10)

-0.105*
( - 1 0 .0 3 )

-0.090*
( - 7 .7 7 )

0.89*
(30 .16)

B6 : Bid below Touch 0.046*
(5 .57)

—0.250* 
( -2 8 .1 6 )

-0.061*
( - 9 .1 3 )

-0.085*
( - 7 .7 9 )

-0.333*
( - 2 0 .7 2 )

0.51*
(18 .40)

B7: Bid Far from Touch 0.047*
(5 .05)

- 0 .1 0 2 *
( — 15.45)

-0.052*
( - 9 .2 7 )

-0.134*
( - 1 1 .5 5 )

-0.286*
( —21.54)

0.63*
(26 .39)

B8 : Full Cane.Bid Touch -0.192*
( - 1 1 .5 3 )

-0.117*
( - 8 .0 7 )

-0.064*
( - 1 3 .1 1 )

-0.114*
( - 7 .2 4 )

-0.488*
( -2 7 .9 0 )

1.47*
(21 .22)

B9: Part.Cane.Bid Touch - 0 .1 2 1 *
( - 1 3 .1 1 )

-0.035*
( - 5 .0 8 )

-0.067*
( - 8 .0 0 )

-0.097*
( - 7 .5 2 )

0.636*
(37.41)

1.70*
(46 .22)

BIO: Canc.below Touch -0.174*
( - 1 9 .9 1 )

-0.217*
( -2 0 .5 7 )

-0.066*
( - 1 0 .3 5 )

-0.132*
( —11.22)

-0.194*
( - 1 4 .5 6 )

0.69*
(23 .01)

B ll:  Cane.Far from Touch -0.216*
( - 1 9 .5 3 )

-0.082*
( -1 2 .7 0 )

-0.053*
( - 1 0 .5 0 )

-0.154*
( —11.22)

-0.125*
( - 1 0 .8 4 )

0.77*
(30 .37)

Table 2.6 reports the fully parametric maximum likelihood estimates (j3r. %)' of competing 
risks r — 1..... R. based on the sample of bid-side events between 6  a.m. and 5 p.m. GMT on the 
week of October 6-10. 1997. The baseline hazard functions hor(t) are specified using a biparametric
Singh-Maddala form hor(t) =  ^ 0,''nr • The estimated coefficients at the Markov state covariates 
d, omitted for brevity, are available from the author upon request. The i-statistics reported in
parentheses for vectors (/3 r . 7 ,. — 1)' are based on the robust (“sandwich-type”) estimates of the 
variance-covariance matrix of the coefficients. Entries of the table are marked by stars, whenever 
the estimated coefficients are statistically significant at the 95% level of confidence.
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Table 2.7: Cox regressions for competing risks of seller-initiated events in the limit order

book (Markov state coefficients omitted)

Risk Type (r) Side Spread Slippage log(Q ,«k) log(Qbid)

A l: Hit by Aggress.Ask 0.231*
(9 .40)

-0.379*
(-2 2 .9 1 )

0.069*
(12 .28)

0.217*
(8 .09)

-0.832*
( -2 7 .1 4 )

A2: Hit by Market 0.366*
(27 .00)

-0.314*
( -2 9 .7 1 )

0.060*
(10 .30)

0.179*
(13 .42)

-0.085*
( - 6 .2 1 )

A3: Hit by Small Ask 0.191*
(9 .20)

-0.381*
( -2 0 .0 0 )

0.075*
(12 .41)

0.151*
(0 .85)

0.310*
(14.70)

A4: Offer within Spread 0.088*
(0 .89)

0.050*
(11.25)

0.009
(1 .38)

0.246*
(17 .24)

- 0 .0 1 2
( - 0 .8 2 )

A5: Offer at the Touch 0.058*
(5 .07)

-0.068*
(-1 2 .5 0 )

- 0 .1 2 1 *
( - 1 8 .2 8 )

0.129*
(10 .85)

0 .0 0 1
(0.05)

A6 : Offer above Touch - 0 .0 0 2  
(—o.i:{)

-0.199*
( -2 4 .2 4 )

-0.178*
( - 1 8 .8 9 )

- 0 .1 1 2 *
( - 8 .1 0 )

0.061*
(4.50)

A7: Offer Far from Touch —0.028* 
( - 2 .2 0 )

-0.063*
( - 9 .0 7 )

-0.139*
( - 1 5 .3 4 )

-0 .024
( - 1 .6 8 )

0 .0 0 2
(0.18)

A8 : Full Cane.Ask Touch 0.263*
(13 .84)

-0.118*
( -1 2 .1 6 )

-0.166*
( - 1 4 .9 8 )

-0.359*
( - 1 7 .3 7 )

0.009
(0.41)

A9: Part.Canc.Ask Touch 0.146*
(10 .32)

-0.043*
( - 5 .8 0 )

- 0 .1 1 1 *
( - 8 .8 3 )

0 .8 6 6 *
(47 .74)

-0.030
( - 1 .8 5 )

A10: Canc.above Touch 0.243*
(19 .09)

-0.170*
( -2 2 .2 1 )

-0.182*
( - 2 0 .1 2 )

-0 .007
( - 0 .4 5 )

0.016
(1.12)

A ll: Canc.Far from Touch 0.262*
(20 .09)

-0.069*
( - 9 .4 2 )

-0.097*
( - 9 .1 0 )

0.047*
(3 .30)

-0.016
( - 1 .0 9 )

Table 2.7 reports the estimates j3r in the parametric part of the semiparametric CPH model 
for competing risks r  =  1..... R, based on the sample of ask-side events recorded between 6  a.m. 
and 5 p.m. GMT on the week of October 6-10. 1997. The estimated coefficients at the Markov 
state covariates d. omitted for brevity, are available from the author upon request. The f-statistics 
reported in parentheses are based on the robust estimates of the variance-covariance matrix of 
coefficients (Lin and Wei [87]). Statistically significant covariate coefficients (at the 95% level) are 
marked by stars.
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Table 2.8: Cox regressions for competing risks of buyer-initiated events in the limit order-

book (Markov state coefficients omitted)

Risk Type (r ) Side Spread Slippage log(Q:usk) log(Qb1(i)

B l: Taken by Aggress.Bid -0.171*
(-6 .8 -1 )

-0.405*
( -2 1 .8 6 )

0.219*
(10 .61)

-0.877*
( - 2 7 .8 0 )

0.209*
(8 .34)

B2: Taken by Market -0.320*
(-2 -1 .32)

-0.335*
( - 3 0 .3 6 )

0.140*
(12.76)

-0.080*
( - 6 .0 1 )

0.176*
(13.42)

B3: Taken by Small Bid -0.097*
( - 1 .7 1 )

-0.441*
( - 2 8 .0 5 )

0.187*
(12.99)

0.263*
(12.54)

0.163*
(7 .22)

B4: Bid within Spread -0.063*
( - 1 .9 2 )

0.058*
(17.58)

0.048*
(8 .89)

- 0 .0 2 1
(-1 .4 .3 )

0.217*
(14.88)

B5: Bid at the Touch -0.018
( - 1 .8 0 )

-0.054*
( - 1 1 .2 0 )

-0.050*
( - 9 .1 3 )

0.005
(0 .45)

0.129*
(10.71)

B6 : Bid below Touch 0.050*
(4.-10)

-0.176*
( - 2 2 .1 9 )

-0.060*
( - 9 .7 2 )

0.053*
(4 .02)

-0.086*
( - 6 .3 0 )

B7: Bid Far from Touch 0.050*
('1.30)

-0.059*
( - 1 0 .0 7 )

-0.053*
( - 8 .8 5 )

0.014
(1 .09)

-0.035*
( - 2 .5 2 )

B8 : Full Canc.Bid Touch —0.237* 
( - 1 2 .8 1 )

-0.075*
( - 7 .0 4 )

-0.063*
( - 9 .4 4 )

-0.003
( - 0 .1 7 )

-0.368*
( - 1 8 .1 1 )

B9: Part.Canc.Bid Touch -0.147*
( - 1 0 .6 2 )

-0.033*
( - 5 .1 1 )

-0.065*
( - 6 .7 4 )

-0.039*
( - 2 .4 5 )

0.865*
(47.33)

BIO: Cane.below Touch -0.205*
( - 1 6 .6 9 )

-0.152*
( - 1 9 .5 4 )

-0.065*
( -1 0 .4 1 )

0 .0 1 1
(0 .79)

- 0 .0 2 2
( - 1 .5 5 )

B ll :  Cane.Far from Touch -0.247*
( - 2 0 .1 4 )

-0.050*
( - 8 .5 1 )

-0.054*
( - 9 .3 0 )

-0.024
( - 1 .7 5 )

0.032*
(2 .28)

Table 2.8 reports the estimates /3r in the parametric part of the semiparametric CPH model 
for competing risks r — 1..... R. based on the sample of bid-side events recorded between 6  a.m. 
and 5 p.m. GMT on the week of October 6-10. 1997. The estimated coefficients at the Markov 
state covariates d. omitted for brevity, are available from the author upon request. The f-statistics 
reported in parentheses are based on the robust estimates of the variance-covariance matrix of 
coefficients (Lin and Wei [87]). Statistically significant covariate coefficients (at the 95% level) are 
marked by stars.
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Figure 2.1: The Reuters D2000-2 automated brokerage terminal

Part of display in the center of the screen on Figure 2.1 contains electronic communication messages 
for direct bilateral trades transmitted via D2000-1 system (which is not covered in this dissertation). The 
upper part of the display provides information about the state of the Reuters D2000-2 electronic limit 
order book. The dealer can choose up to five exchange rates or select just one pair. The exchange rates are 
displayed in two alternative formats: in the upper left side of the screen the best market quotes and quantities 
available at these quotes are displayed: to the upper right, the dealer can see the best bid and ask quotes 
and quantities available to him. In the upper right corner of the screen, the dealer observes the direction 
and price of the last trade through the Reuters D2000-2 automated brokerage. The image of the Reuters 
D2000-2 electronic trading screen used in this insert was taken from the Reuters information webpage at 
http://about.reuters.com/transactions/d22s.litm which provides detailed information on the Reuters D2000 
trading system.
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Kernel Estimates of Baseline Hazards for Seller-Initiated
Observable Events (k-NN Quartic Kernel Estimator, k=0.2J)
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Figure 2.2: Kernel estimates of baseline hazards for seller-initiated observable events

Figure 2.2 shows the normalized A:-nearest neighbor estimates hQ*(t) of the baseline hazard functions 
for publicly observable seller-initiated events. The hazards of notional risks are shown on the graph in the 
following sequence, from top to bottom: A8, A9. A5. A4. A2. A3, A l. The weights assigned to the nearest 
neighbors are determined by the quartic function (2.15) with the "neighborhood” as large as 20% of distinct 
duration values in the sample. All estimated hazard functions are normalized to unity near the origin, to 
facilitate the comparison of their shapes.
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Kernel Estimates of Baseline Hazards for Buyer-Initiated
Observable Events (k-NN Quartic Kernel Estimator, k=0.2J)
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Figure 2.3: Kernel estimates of baseline hazards for buyer-initiated observable events

Figure 2.3 shows the normalized A:-nearest neighbor estimates ) of the baseline hazard functions
for publicly observable buyer-initiated events. The hazards of notional risks are shown on the graph in the 
following sequence, from top to bottom: B8. B9. B4, B3. B2. B5. B l. The weights assigned to the nearest 
neighbors are determined by the quartic function (2.15) with the "neighborhood" as large its 20% of distinct 
duration values in the sample. All estimated hazard functions are normalized to unity near the origin, to 
facilitate the comparison of their shapes.
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Estimated Baseline Hazards Implied by the Singh- 
Maddala Parametric Form for Seller-Initiated Events
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Figure 2.4: Estimated baseline hazard functions implied by Singh-Maddala parametric form 

for seller-initiated events

Figure 2.4 shows the estimated baseline hazards

h 0r (t )  =
1 +  a rf »r

implied by the Singh-Maddala functional form (2.7) for publicly observable seller-initiated events. The 
hazards of seller-initiated events me shown in the following sequence, from top to bottom: A2, AS, A5, A l, 
A4. A3, A9. The values of parameters a r and 7 r for all types of events are equal to the fully parametric 
maximum likelihood estimates reported in Table 2.5.
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Estimated Baseline Hazards Implied by the Singh- 
Maddala Parametric Form for Buyer-Initiated Events
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Figure 2.5: Estimated baseline hazard functions implied by Singh-Maddala parametric form 

for buyer-initiated events

Figure 2.5 shows the estimated baseline hazards

7 rf7’' - 1
h0r(t) =

1 +  a rt>

implied by the Singh-Maddala functional form (2.7) for publicly observable buyer-initiated events. The 
hazards of buyer-initiated events are shown in the following sequence, from top to bottom: B2, B5, B8, B l, 
B3. B4, B9. The values of parameters a r and 7 r for all types of events are equal to the fully parametric 
maximum likelihood estimates reported in Table 2.6.
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Kernel Estimates of Hazard Functions for Seller-Initiated
Observable Events (k-NN Estimator, k = N/20, Quartic Kernel)
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Figure 2.6: Kernel estimates of risks for seller-initiated events in a hypothetical scenario

Figure 2.G displays the /r-nearest neighbor estimates IIq*. ( t )  e x p (z /fl/3(.) of the hazard functions for 
publicly observable seller-initiated events, stacked from bottom to top in the order A 1-A 5. A8. A9. The plots 
are constructed for the covariates summarized by vector Z =  ( x ; . implied by the following hypothetical 
trading history: (1) the current bid-ask spread equals two ticks (0.02 Pfennig); (2)the quoted depth equals 
two million dollars at the best offer price and ten million dollars at the best bid price; (3) the last prior 
trade was a buyer-initiated transaction that occured in the middle of the current bid-ask spread; (4) the 
last event observed on the market is complete cancellation of bid at the previous best bid quote (leading to 
price deterioration, event B8). The weights assigned to the nearest neighbors are determined by the quartic 
function (2.15). with the "window" equal to 20% of the number of distinct duration values in the sample.
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Kernel Estimates of Hazard Functions for Buyer-Initiated
Observable Events (k-NN Estimator, k = N/20, Quartic Kernel)
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Figure 2.7: Kernel estimates of risks for buyer-initiated events in a  hypothetical scenario

Figure 2.7 displays the /.'-nearest neighbor estimates /Iq*(£) exp(z^/3r) of the hazard functions for 
publicly observable buyer-initiated events, stacked from bottom to top in the order B1-B5, B8, B9, respec­
tively. The plots are constructed for the covariates summarized by vector Z — ( x ! , d , ) / implied by the 
following hypothetical trading history: (1) the current bid-ask spread equals two ticks (0.02 Pfennig); (2)the 
quoted depth equals two million dollars at the best offer price and ten million dollars at the best bid price; 
(3) the last prior trade was a buyer-initiated transaction that occured in the middle of the current bid-ask 
spread; (4) the last event observed on the market is complete cancellation of bid at the previous best bid 
quote (leading to price deterioration, event B8). The weights assigned to the nearest neighbors are deter­
mined by the quartic function (2.15), with the "window" equal to 20% of the number of distinct duration 
values in the sample.
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Chapter 3 

Statistical Foundations o f the  

C om peting Risks Theory: A Counting  

Process Approach

3.1 Introduction

This chapter introduces and develops statistical foundations for the econometric framework 

of competing risks. The model can be applied, with modifications, to  any sequence of 

events tha t occur at random, rather than predetermined, time intervals. In the context of 

electronic limit order market, such events can naturally be associated with changes of the 

information publicly available from the trading screens. The events can also include public 

“news” announcements or any other information that arrives at irregular time intervals, and 

therefore can be modeled as a point process in continuous time.

The central example considered in this chapter involves application of the popular sta­

tistical methodology of competing risks to the analysis of the order flow and price formation 

in the Reuters D2000-2 brokerage system, which has been one of the main liquidity providers 

in the electronic segment of the foreign exchange market. The basic assumption behind the
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general set-up of competing risks is that the state of a subject of study (in our case, it will be 

primarily the publicly observable part of the electronic limit order book) can be changed by a 

finite number of causes (sometimes called notional risks), which can be potentially of entirely 

different nature and usually are assumed independent. At any moment of time the relative 

importance of notional risks is determined by the odds of their instantaneous realization 

which can be numerically characterized by the risk-specific hazard functions. After a single 

risk is realized and the limit order book modifies, the remaining risks that competed with 

each other under the prior market conditions become irrelevant in the new state. Then the 

“internal clock” of the “race” is initialized, and a new “race” begins immediately among the 

participating notional risks under the new market conditions, proceeding up to the moment 

when the next “winner” triggers another change in the limit order book, and so forth.

From a broader perspective, the competing risks approach developed in this chapter 

considers the limit order flow as a sequence of independent or quasi-independent realizations 

of a multivariate marked point process (Snyder and Miller [121]), the number of its compo­

nents being equal to  the number of identified notional risks. The tradition of using univariate 

and bivariate marked point processes in the analysis of high-frequency financial data was 

started relatively recently with a series of papers by Engle and Russell [41], [42], Engle and 

Lunde [40], Gourieroux et al. [55], Engle [39], and Russell et al. [119]. In this literature 

the irregularly spaced arrivals of transactions or quotes are modeled by a self-exciting point 

process with memory, the autoregressive conditional duration (ACD) being its most popu­

lar specification. The markers are usually represented by quotes or transaction prices and 

volumes (when available) and modeled conditional on their arrival times.

One major impediment to broad applications of this approach to multivariate financial 

data has been the unresolved issue of how the markers of qualitatively distinct nature should 

be treated. This problem is quite difficult since the intervals between irregularly spaced ticks 

(events) of one type can overlap with the intervals between irregularly spaced ticks of other 

types in a complicated way, and there is no natural ordering of such multiple duration in­

tervals. For instance, the researcher extending the ACD framework to bivariate tick-by-tick
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data on Deutsche Mark/U.S. dollar and Japanese yen/U.S. dollar exchange rates needs to 

decide whether he is interested primarily in the durations between all consecutive quotes, 

between the quotes coming from the same market, or, probably, the duration intervals initi­

ated by a Deutsche Mark quote followed by a Japanese yen quote. A similar problem arises 

when the ACD model is applied to simultaneous modeling of quotes and trades that come 

from the same market. If the durations between transactions and subsequent quote revisions 

represent the primary object of investigation (Engle and Lunde [40]), then transaction ticks 

can be naturally assumed a forcing variable driving the quote revisions. Similarly, an exten­

sion of this approach to multivariate setting requires imposing a specific recursive structure 

describing interaction between different types of events. In this setting, modeling directly the 

distribution of durations is subject to ad hoc restrictions on the information arrival process 

which are usually hard to justify from the first principles.

The competing risks model developed in this chapter treats events of each type sym­

metrically and thus avoids the need to select the “driving process.” It has at least two 

counterparts in the recent literature. Bisiere and Kamionka [13] apply a fully paramet­

ric competing risks model to the analysis of dynamics and sequencing of orders to trade 

the Alcatel shares a t the Paris Bourse, gives a joint explanation of the duration between 

consecutive orders and their aggressiveness, and stresses the im portant role of information 

about the limit order book in the price discovery process. Unlike Bisiere and Kamionka 

[13], this chapter treats the hazard functions of competing risks semiparametrically, allow­

ing more freedom in the specification of baseline hazards without increasing computational 

requirements.

Symmetric treatment of components of the multivariate point process also makes the 

model of this chapter similar in many respects to the multivariate version of the autoregres­

sive conditional intensity model introduced by Russell [118]. The feature of the competing 

risks methodology tha t distinguishes it from the mainstream literature on point processes is 

the inherently limited observability of components of the underlying multivariate stochastic 

process due to a self-censoring mechanism directly built into the structure of the model. This
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leads to  a natural behavioral interpretation of the hazard functions of competing risks as the 

instantaneous likelihoods of observing the action of a particular type of trader in the market 

populated by agents possessing heterogeneous information, using different models, and ex­

ercising different trading strategies. This representation appears to be especially relevant in 

the foreign exchange market, where the true model is far from obvious and the information 

is widely dispersed across traders.

This chapter starts with a stylized presentation of trading history in the form of a 

sequence of marked random events. Section 3.2 casts this idea into the framework of counting 

processes and puts the approach outlined in the previous chapter on the solid theoretical 

ground. The emphasis is made on the results that prove useful for the development of 

the likelihood-based approach to semiparametric estimation of competing risks in section

3.3. Section 3.4 reviews some of the large sample properties for the popular estimators 

of competing risks in the Cox regression context. Section 3.5 applies the methods and 

theory developed in the previous sections to the problem of baseline hazard ra te  estimation 

for a range of limit order book events. Finally, the popular simulations procedures in the 

competing risks framework and their practical implementation are briefly discussed in section 

3.6.

3.2 A n E conom etric M odel o f th e  Lim it Order B ook

In this section we s ta rt with the formalization of the trading history process as a sequence of 

marked random events. Then we recast the model in the counting process framework, give 

necessary definitions, and online the technical assumptions that will facilitate development 

of the asymptotic theory of competing risks in the later sections. We complete this section 

with a set of examples tha t will clarify the definitions.
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3.2.1 Events, Epochs, Sub-Epochs, and the Internal Clock

Suppose we observe N  time intervals (r„_ i; T„], n  =  1 ,2 ..... N ,  w ith the endpoints identified 

by consecutive occurences of publicly observable events. Such events are assumed to have 

one of the S  types r = 1 . 2, . . . .  S, and can be interpreted as observations generated by the 

underlying economic process. In the context of a pure limit order market, any such event 

marks the beginning of a new epoch. At the outset of an epoch the internal clock is re-started 

and run until the first arrival of a publicly available information represented by the compo­

nents of the covariate vector Z„. The covariates may be representing the information on the 

electronic trading screens, time-of-the-day indicators, public news announcements, etc. By 

design, vector Z„ is predetermined by the previous history and by the initial conditions, and 

thus it remains constant throughout the entire epoch n.

In addition to publicly observable events, there are events of types r  =  S  +  1, . .. ,R  

tha t are assumed to be unobserved by the general public. More precisely, occurences of 

unobservable events of types r =  S  +  1...., R  remain private information of the agents initi­

ating such events. Submissions and cancellations of buy and sell limit orders at suboptimal 

prices may serve as examples of such events in the electronic market environment. Any 

epoch n  contains a non-negative number of such unobservable events, which naturally iden­

tify sub-epochs within a given time interval (T„_i;T„.]. The internal clock of the system is 

not re-started a t the beginning of sub-epochs until the beginning of the next epoch, and the 

covariate vector Z„ representing the publicly available information also remains unchanged 

until the occurrence of next observable event at the random time Tn.

The general structure of an epoch is shown on Figure 3.1. To fix the notation, we 

assume throughout this section that the sample contains the to tal number N  of observable 

and N* — N  unobservable events. We also assume R  -C N ,  which means th a t the number 

of event types must be much smaller than the number of interarrival epochs in the sample. 

The terms “event” , “failure” , and “risk” will be used interchangeably. The term  “previous 

history” will refer to the records of durations and events prior to the beginning of a  given 

epoch.
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3.2.2 A Counting Process Representation o f the Event History

Let the random process N„r(t) count the events of type r that occur between zero and t 

seconds after the beginning of the nth epoch Thus N nr(-) is a non-decreasing

univariate counting process taking values in {0 ; 1 } for the observable events of types r — 

1 ..... 5, and taking any non-negative integer values for unobservable events of types r  =  

5  +  1 R- Consider the random process

N.r( t ) = N lr(t) + N2r(t) + ... + NNl.(t).

which counts the total number of events of type r in the duration interval (0 ; t] since the 

inception of the sample interval. Assume tha t all processes N nr(t) are well-defined with 

respect to a right-continuous, increasing, and complete filtration (JF„(t))[=0. where r  is a 

fixed positive number or infinity, which means that they obey the usual technical conditions 

imposed in the statistical literature on counting processes (see Andersen et al. [8 ], p.60). 

The dynamic properties of the analyzed collection of counting processes

N  =  (N nr. r  =  1...., R; n  =  1,.... N)  (3.1)

are characterized by their compensators

A(0) =  (A„,.(0), ?• =  1 ,.... R: n  =  1,.... N). (3.2)

The compensators (3.2) are absolutely continuous and given by

t.

A„r (f;0) =  I  \ nr(u;0)du, r  =  1 , n =  1 ,..., N, (3.3)
o

where 0 is the parameter of interest. The individual intensity processes A„,.(•; 0) in (3.3) 

have a multiplicative structure

Anr(t; 0) =  Ynr{t)hni.(t\Zn;0). r = 1,..., R, n  =  1 ,..., N.

The indicators Ynr(t) of being at risk of type r at time t — of epoch n  are predictable (even 

though not necessarily publicly observable) binary processes which are independent of 0.
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Moreover, we assume for convenience tha t for any type of notional risk r in epoch n  the

corresponding hazard rate //.„, (•) satisfies the Cox’s proportional hazard model

hnr{t\Z„;0) = h,Qr(t', 7 ) exp(Z/„/3,.). r = 1 n = 1, ...,Ar, (3.4)

where Z„ =  (Z,lt Znp)' is the vector of covariates observed a t the beginning of the n th

epoch . 1 The parameter 0  has a semiparametric structure,

where each /3,., r = 1..... R, has dimension p. whereas 7  describing the shape of baseline 

hazard //Q,.(-; 7 ) can generally belong to an infinitely dimensional functional space. The only 

assumption about the baseline hazards /?o, (-) tha t we need at this point is tha t /ior(-) are 

non-negative with

1_
I  h0r{v,)du <  0 0 . r  =  1..... R. (3.5)
0

for all t € [0 ; r).

Components of the joint process N„(t) =  (N nr(t))^=l are assumed to be independent 

with respect to the filtration (,F„(t))[_0. This means that conditional 011 (Nn(u))'v=0 and the 

covariates Z„, we postulate the existence of the intensity

A =  Km | P r {N„(t + S) -  N n(t) > 0|Z„, (Ynr( u ) ) ^ v  0 < u < t}

of the joint counting process N„(-) and the relationship

A„.(t;0) =  f ; A nr(t;fl)
r = l

between the intensities of the joint process and its components, which holds for all n  =

1,.... N  and 0 <  t < t .
11n this dissertation only the case of fixed covariates completely specified at /, =  0 needs to be dealt with. 

Correspondingly, all theoretical results are formulated bearing in mind the specific context of this work. 

However, most of the analysis is extended without major changes to the more general case of predictable 

and locally bounded time-varying covariates.
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To formulate the asymptotic properties of the hazard function estimates of individ­

ual events, we make some technical assumptions about the covariate process In

particular, assume that it is stationary, ergodic, and supported by a compact subset in R 7\  

Denote by <E>,.(z, /), r — 1,.... R. the conditional distribution functions of the covariate vector 

Z„, provided th a t t seconds after the beginning of a randomly chosen epoch Tn] the

system is still a t risk of type r 2 th a t is,

<I>,.(z,t) =  Pr{Z„ < z|yr„(.( t - )  =  1}.

If there exists an absolutely continuous non-increasing function

s r(t) =  P r{y;„.(t-) =  i}.

which can be interpreted as the probability of survival by time t while being under the risk 

of type r at time t—, then the distribution function <I>,.(z) of the covariate Z„, conditional 

that the system is under the risk of type r, can be defined as follows

<I>,.(z) =  Pr{Z„ < z\Y„r( t - )  =  1 for some t  e  [0;r)}

=  -  f  <I>r(z, t)dSr(t).
Jo

Finally, consider

T„(i) = a{(Af„(u))L„, Z,}

and define the filtration

m  =  v
»=i

W ith the above definitions, A„(£) =  (A„r (t) ) ^ =1 is a predictable process having in­

dependent components with respect to T n(t), and hence with respect to while the 

processes

___________________________________ M n { t )  =  ( M n r ( t ) ) r l l  =  ( N n r ( t )  ~  A n r ( t ) ) ri l

2We assume that all at-risk indicators Ynr, r  =  are set to zero immediately at the end of epocli

n.
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with compensators
i.

Anr(t) = I  Alir(u)du 
0

are square-integrable local martingales with respect to which also have independent 

components 011 the interval of durations [0;r]. More precisely.

A „(*) =  (A  ,„•(*))?=:

is the compensator of vector process

N„(t) = L,

with respect to the filtration J„(f)V W T(f), where H T(t) is the rr-field generated by the entire 

future of

within the given epoch n.

Before describing the methods that may be used for estimation of this rather abstract 

general model of event history, it is worthwhile to recast the key concepts in the context of 

two simple examples.

3.2.3 Example 1: Two Competing Risks

Suppose we observe a sample (Z „ .Tn.5n)‘̂=l, where Z„ is a vector of covariates, Sv =  

l{7seii,n < TBuy.„} is the indicator of whether the nth epoch ends with a seller-initiated 

(vs. buyer-initiated) event, and T„ = min(TBUy,n; 7scii,„). In the prototypical case of two 

competing risks without covariates, the only observables are the outcomes (Tn,Sn) of the 

two latent duration variables Tsuy.n and Tseiu  (Figure 3.2).
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3.2.4 Example 2: M ultiple R isks in a Dynam ic Limit Order Mar­

ket Environment

The central application of the competing risks theory developed in this chapter pertains to 

the analysis of trading history in an electronic limit order book, which can be completely 

characterized by the sample (Z„, Y„ (t). T„. r„)^=l, where Z„ is a set of covariates tha t includes 

publicly observable characteristics of the limit order book at the beginning of epoch n (which 

is a subset of the information that appears on trading screens at the outset of epoch n ) , as well 

as a publicly available recent history of the book. As usual in a competing risks environment, 

denote by

T„ =  min T„r
r = l  It

the duration of epoch n. and by

r„ =  arg mini;,,.
;•= l /?

the type of event causing the end of epoch n,3 and Y„(t.) = {Y„r(t))^=1 is the vector of at-risk 

indicator processes, which are usually functions of covariates Z„ and may also depend on 

the state of the limit order book, which may be hidden and undetectable on the trading 

screens. The simplified illustration for three types of risk, of which only two are assumed to 

be publicly observable, is given in Figure 3.3.

We conclude this section with three alternative forms of at-risk indicators Ynr(t). The 

first form characterized by the property y,,.(0+) =' 1 corresponds to the typical situation 

where the market conditions at the beginning of epoch n  do not preclude the occurrence of 

an event of type r a t any moment within the given epoch.

The second form corresponds to the case Ynr(t) =  0 for all t e  [0; r). For instance, if r 

is the risk that the next event will be submission of a limit order within the bid-ask spread, 

and the current value of the bid-ask spread equals the minimum possible value of one tick, 

then risk r can be effectively eliminated from the set of the risks competing in the current

3 For the time being we rule out the tied durations, so that type r of the event identifying the end of 

epoch is determined uniquely.
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epoch n  since it can never occur.

The third form may be exemplified by the risk r  that cancellation of a subsidiary limit 

order occurs one tick above the current best ask price, whereas the limit order book does 

not currently contain any sell orders at such a price. Therefore, risk r  is not among those 

competing for time priority in the beginning of the current epoch. However, if submission 

of a subsidiary sell limit order one tick above the current best ask price occurs prior to 

any observable event, risk r can re-emerge and therefore should be included into the set of 

competing risks. For example, this can happen because the at-risk indicator Ynr(t), which 

equals zero at the beginning of the epoch, may switch its value once or several times before 

the epoch ends. Of course, any change of the indicator marks the s tart of a new sub-epoch, 

but not necessarily of a new epoch. (See the definitions of epoch and sub-epoch in the 

beginning of this section.)

3.3 Sem iparam etric E stim ation  o f th e  C om peting  R isks  

M odel

This section lays out statistical foundations of the likelihood-based approach to the semipara­

metric estimation of competing risks. The most popular methods of hazard rate estimation 

are either fully parametric or nonparametric. While the theory behind parametric meth­

ods is rather straightforward, the estimation results can be biased if the parametric model 

is misspecified. On the other hand, purely nonparametric techniques often suffer from the 

“curse of dimensionality” leading to unacceptably wide confidence bands. Therefore one may 

expect to take advantage of both parametric and nonparametric techniques by hitting the 

middle ground with the semiparametric model.

In this section we focus on a semiparametric likelihood-based estimation procedure 

which is robust and computationally efficient. Robustness can be a serious concern in ap­

plications since economics and financial theory usually leave a t least part of the model
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unspecified. Moreover, frequently there is a logical gap between the formulation of a highly 

stylized theoretical models of market microstructure delivering crisp predictions under the 

purist assumptions and the loosely specified data-driven econometric models used to test 

implications of the theory. Taking into consideration multiple sources of noise and errors 

in the empirical data, successful implementation of empirical methods often requires large 

data sets tha t might involve tens and even hundred thousands observations. Additionally, 

one should approach seriously the problem of computational efficiency, since the methods 

successfully applied to the samples of moderate size often become excessively cumbersome 

and impractical when adapted to large databases, which is usually the case in high-frequency 

financial econometrics.

The following review begins with the description of the profile likelihood method for 

hazard rate estimation. To illustrate this method we use the Cox proportional hazard spec­

ification which leads to an extremely simple form of the partial likelihood function and has 

attractive robustness properties. Moreover, the likelihood function can be efficiently max­

imized using the standard statistical software. The partial likelihood estimation naturally 

leads to the classical Nelson-Aalen estimator for the cumulative hazard functions. Next we 

review the idea of smoothing the increments of this estimator which was originally applied 

by Ramlau-Hansen [115] to estimation of the baseline hazard functions. After heuristic dis­

cussion of the deficiencies of the proposed “internal” estimator we present an alternative 

“external” estimator, which has the same first-order asymptotics as the Ramlau-Hansen es­

timator but is expected to perform better in the presence of heavily censored observations, 

which is a typical situation in the models with multiple competing risks. Finally we provide 

an extension of the locally constant “external” estimator to the locally linear “external” es­

timator. Results of this section lay the groundwork for the analysis of asymptotic properties 

of the proposed estimators in the next section.
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3.3.1 The N elson-A alen  estimators for the Cumulative Hazards 

and the Incidence Rates

Assume tha t the available dataset consists of the triplets of censored data (Z„,T’„. r„), n  =

1..... N , where Z„ is a vector of covariates. and the pair (T„.r„) represents the time and type 

of the observed event,

T„ = mill T,lr. r„ =  argminT,,,..
'•=1 K 1-1....R

The stopping times T„r of the underlying counting processes (3.1) are defined as 

t,„. =  inf{f € [0; r)  : AN nr(t) > 0}, r = 1,.... R ; n  =  1,.... N.

The partial likelihood function of the data is proportional to the product integral

N ( R /  R
II n  Il(^.(0exp(Z;,/3r))AjV'"(t) l-E ^ o r(0 ^ 0)(/3,.t) \
/i=l te[0;r) lr=l \  r=l /  J

(3.6)

defined on the complete dataset (3.1) of vector processes (N nr, r  =  1..... R.\ n  =  1,.... N ), 

which are only partially observable. In formula (3.6) we use the notation

S,(0)( / M )  =  j : Y nr(t)oxp(Z'n/3r).. r  =  1 ,.... R..
n=i

for the cumulative risk index of type r at time t —, and

t._
H0r{t) = I  ho,-{u)du. T =  1, ...,R , 

b

for the cumulative baseline hazard functions of type r.

After rewriting the partial likelihood in the form

N R
n  n  n  o h m o  i

/.€[0;r) l » = l r = l r—I

(3.7)

and maximizing it with respect to AHar(t) for a fixed value of /3 =  {f3\,.... f tR) ' , we obtain

AH,.(t,/3 ) =  f  (3.8)
r S l0)(l3r.t)
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ancl, therefore, for a fixed value of (3, H0r(t) is estimated by the N elson-A alen estim ator

H It ft ) — (  Jr(u )dN.r{u) . ,

where </,•(«) = l(Y,.(u) > 0), Yr — Y^r +  ... +  YNr, and N.r = N lr +  ... +  N Nr.

Inserting the Nelson-Aalen estimator (3.9) into the partial likelihood formula (3.7)

yields the profile likelihood which only depends on f3:

£part(/3) =  CcoAP)  n  U ± N A t ) AKAtH l - A N 4 t ) ) l - AN- ^
(€[0;r)  r = l

=  -CCox(/3) n  ( n A v V .r( t ) ^ ' (')} x e x p ( - A . . ( r ) ) .
(€[(J;t) W - l  J

where N.. = N.\ + ... + N.n. and

N R fexnlZ'  3  AAr" r ( ')

* > .< «  =  n  n  n
l€[0 ; r ) i i = l r = l  \ O r  \ Pr,t)

is the Cox partial likelihood. The value of (3 maximizing the log Cox partial likelihood 

<?Cox(/3) =  log£cox(/3)

r = l
J 2  jZ 'n(3rdN m.(t) ~  j lo g S i0H(3,..t)dN.r(t)
n = 1 i  n0 0

will be denoted (3. Then the cumulative baseline hazard function Ho,.{t), r — 1..... A, is esti­

mated by H q,.(s . 3,.), which is the Breslow estim ator of the baseline hazard of competing 

risk r.

Finally, the conditional probability tha t event of type r will be next to occur less than 

t < r  seconds after the previous event is

i.

P,.((U; Z Q) = f  P0(0 .u;Z0)exp(Z'0/3r)dH0r(u), r = l . . . . .R ,  (3.10)
b

and can be estimated by

i.

Pr(0, t; Z0) =  j ' Po(0, u; Z0) exp(Z' Pr)dH0r(u. 3,.), (3.11)
o
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where Fo(0, t; Z0) and Po(0.t; Z0) are respectively the conditional probability of survival at 

time f since last event,

Po(0 .f;Z o) =  n  f 1 ~  5 Z exP(Zo A )^ o r( '« )
«€[();/) V '•=*

- f ;e x p ( Z ^ , . ) ^ o ,( f )

and its estimator

exp

P0(0 .t;Z 0) =  exp
n

^exp(Z '/3 ,.)Po,.(^./3r )
; • = !

3.3.2 Invariance Property of the Maximum Partial Likelihood Es­

tim ator

The partial likelihood function £cox(/3) has a remarkable robustness property which makes 

the maximum likelihood estimator /3 an attractive choice in the following dynamic context. 

Specifically, it is invariant with respect to monotonic deformations of the time scale within the 

duration period [0;r). This invariance property with respect to monotonic transformations 

(j{t) of param eter t € [0; r] follows from the fact that the numerical value of Cox partial 

likelihood function

N T
E  /  Z',,PrdNm.(t) -  /  log S<°>(/3r . t)dN.r{t) (3-12)

£cox(/3) =  log £ Cox(/3)
/? . r  n  

= E
r= 1 n = l  ]

increases by a  deterministic constant Cg after the parameter t € [0;r] is transformed 

monotonically into t =  g(t) € [0; fj{r)]. Indeed, the ordering of occurences of the failure 

events and their censorings is unaffected by the deterministic time scale deformation g(-), 

which implies the invariance of the second integral in (3.12). Invariance of the first integral 

in (3.12) with respect to the time deformation is obvious, since the integrands Z'n/3,. are 

time-invariant.
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3.3.3 Alternative Kernel Estim ators of the Baseline Hazard Rates

The first kernel estimator for hor{t) was proposed in Ramlau-Hansen [115]. It is defined as

hor{t\}Cr, br) = ^  flC r  dH0r(U,P r), (3.13)
r  '() ;■

where H0r(u,(3r) is the Nelson-Aalen martingale estimator (3.9) evaluated a t point u, and 

the kernel function /C,.(-) satisfies the following standard conditions.

Condition K . The kernel functions K r, r  =  1..... R, satisfy

1 1 l
I  K r{t)d;t =  1, j ’ tX ,{ t)d t = 0, I  i2K,,\t)d,t = k’2r > 0.

- i - i  - i

It is easy to see that Ramlau-Hansen estimator is obtained by application of the ker­

nel smoother to the increments of the Nelson-Aalen estimator (3.8). Since smoothing of 

the cumulative baseline hazard increments in (3.13) is performed prior to integration, the

Ramlau-Hansen estimator (3.13) is frequently called “internal” estimator. This “internal”

property implies that the estimator (3.13) depends only on the realized durations of risk r, 

and does not depend on the realized durations of the competing risks r' ^  r.

The heuristic idea behind the second method of baseline hazard estimation is that the 

value of /tor(’) a t the point t. is likely to affect the process N „,.(■) only in a neighborhood of t. 

Thus in order to estimate h0r(t) it would be sufficient to consider a portion of the likelihood 

function that emphasizes behavior of the process in the locality of t. This is accomplished
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by computing the kernel-weighted partial log-likeiihood

(^parUv(3) * ^-b)(0

£  [  f  £  nr(«)rf^,r(«)(l0g(/'0r(M )) +  Z'„3r)
► 1 •' */ r,— t

-  [  S l0)(Pr.u)dH 0r(u) ~  s)ds
0

/?
=  £ ( W * ( 3 r ) * £ r j J W

r = l

instead of the ordinary likelihood, where the kernel function 1C, is defined as (t) =

where /Cb =  (/Q./,,. /C2./,2. ..., /C/?,/,„)' is an A-vector of non-negative smooth symmetric kernels 

/Cri/,,. with support [—1; 1] and the vector of bandwidth parameters b  =(&i, b2, . Note

that the kernel-weighted partial log-likelihood can be re-written so that the Cox partial 

log-likelihood (3.4) is factored out, yielding the “external” estimator

This estimator was first proposed in the covariate-free case by Hjort [73] and studied by

property. Indeed, //0r incorporates the information about durations to the events of type 

r  both directly (via realized occurences of risk events) and indirectly (via the risk index 

S<0>(/3r , i/,) eliciting the information about censoring of risk r  by its competitors r' ^  r).

Both Ramlau-Hansen and Hjort estimators are consistent and asymptotically normal 

under the mild regularity conditions (Andersen et al. [8]). Moreover, the second-order

-ICr (^r)i and /Cr (•) satisfies the usual conditions K.

Let hor{t) maximize the kernel-weighted partial likelihood

N

n=1

£ f / c , f e ) J r ( u W , M0 v '____________ (3.14)

Nielsen and Linton [108], among others. The key feature of estimator /?,0r is its external
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properties of the asymptotic distributions of both proposed estimators are identical to each 

other.'1 The “internal” property of this estimator comes from the fact tha t its properties 

depend only on the realized durations of risk r, and are independent of the realized occurences 

of the competing risks r' ^  r. Therefore, despite its simplicity, the Ramlau-Hansen estimator 

is thought to be inferior to the Hjort estimator, especially in the situations when the realized 

durations of risk r  are subject to heavy censoring by a large number of “competitors” , which 

will be the case in our applications.

3.3.4 Local Linear Sm oothing and Bias Reduction

The advantage of local linear smoothing approach to hazard rate estimation (Jones [80], 

Nielsen and Linton [108]) is that it fits locally the first-order Taylor approximation of the 

underlying pattern, whereas the local constant kernel estimator fits locally to the underlying 

pattern only a constant. Since adding in the first-order approximation usually leads to 

sufficient reduction of biases originating from the regular kernel smoothing, the presentation 

will be restricted to the local linear case.

Now the estimate of the baseline hazard rate hor(t,) can be obtained as follows.5 Con­

sider the solution to the minimization problem

d(t) = argmin I ]  /  £“ [AJVnr(tt) -  x(_„0]“ K.r (^~j~ )  Ynr{u) exp(Z'„/3,.)c/u,

(3.15)

where x '0  =  do + 9\s denotes the local linear trend with param eter 0 =  (80,0X)' and the 

regressors x s =  (1.s)'. The optimal parameters 0(t) =  (90(t).6 \(t))' solve the system of

4This problem was discussed by Nielsen and Linton [108]. They considered a similar problem of estimating 

a semiparametric hazard rate with a parametric duration part and nonparametric dependence of hazard rates

on a marker (covariate) process.
sThis subsection describes only the local linear modification of the “internal" estimator of the baseline

hazard rates. The local linear extension of the “external'' estimator (3.14) can be obtained from an analogous

procedure. The form of this estimator is similar to the nearest neighbor estimator (3.23) below.
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equations

N
x ' - “ (AAW 'u) -  x ;_ „6 > ) /Cr Ynr(u) exp(Z ; , 3 r )dM =  0,

»=1 * \  Or /

which can be written as

TV

0

or, equivalently,

Y ^ T  xi- ' ri-ufcr ( ~ T ~ )  Y,,r^  e x p ’ 6
ii=i b>- '

= y  j  X t-u£r M u )d N .r(u)

Codo + m  = y j  ICr ( L - ^ )  Jr( u m r(u).

CrOo + CoJh =  y f ( t - u ) I C r { y ^ ) M u ) d N . r(u),
0

with

Cm = T  I {t ~  ")m/Cr (V1) S''(0)(̂ ' " m = 0,L2'
Then form the estimator

hlinW -  i / x , _ „ g ( 1)K, ( ^ ) * .
0 

T

=  I f  [ « » ( < ) +  # i ( t )  • ( « - * ) ]  AC,
c .Q r

which also can be represented in the standard kernel form

r

= Tr I ^ r ( t t )0

with the local linear kernel

£•(*) =  - I  Clf , /C,(.s).
CqC'2 —  C\
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Note the stochastic character of the corrected kernel (3.19) that makes automatic ad­

justment near the boundaries. The local constant estimators need special treatm ent near the 

endpoints of the sample, because of their bias for low durations ancl the excessive variability 

for high durations. The local linear estimators are much better in this respect, since it uses 

not only the end values but also internal changes to predict the value of hazard a t the end 

points.

3.3.5 Adaptive N earest Neighbor Estim ation of the Baseline Haz­

ard Functions

In empirical applications the durations used for hazard function estimation are rarely expo­

nentially distributed, even after a large number of covariates have been extracted. When the 

sample of observed durations is heavily skewed, the usual kernel nonparametric estimates 

of baseline hazards with global bandwidth provide poor approximations to the true baseline 

functions in the low density domain of the observed durations. Estimation of the behavior 

of a system in low density regions usually represents a challenge for applied econometricians 

since the rare ( “extreme” ) events are poorly modeled by conventional econometric techniques. 

In particular, precise estimation of functional forms of the hazard rates in these regions may 

be important both in simulation experiments and for global performance evaluation of such 

econometric models.

Two practically relevant problems associated with hazard rate estimation under the 

random censoring were studied extensively in the review paper by Muller and Wang [103]. 

The first problem concerns with the boundary effects near the endpoints of the duration 

support, in particular, around the origin. The second problem concerns with a substantial, 

often explosively growing variance of estimators in the range of extremely high durations, 

where the number of observations is relatively small. As demonstrated by Nielsen and 

Linton [108], the use of the adaptive kernel estimator defined as the ratio of the smoothed 

numerator to the smoothed denominator in the classical Nelson-Aalen formula (3.8) for
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the hazard rate estimator substantially reduces the bias in the range of extremely short 

durations. The external smoother has also some advantages in the range of extremely high 

durations, since its denominator better accommodates the dynamics of the risk index at the 

censored durations which dominate the right tail of the duration range for any notional risk 

of interest.

The nearest-neighbor estimator, which engenders attractive properties of the fixed- 

bandwidth kernel estimators and is more flexible with regard to the choice of the smoothing 

parameter, can be proposed as a solution to the second problem. The combination of flexible 

choice of the bandwidth param eter and the enhanced efficiency of the external estimator can 

lead to substantial variance reduction in the regions of sparse sample design. However, one 

always should be aware tha t the variance reduction may be still insufficient to warrant precise 

estimation of baseline hazard functions in the presence of a large number of competing risks.

As has been emphasized in the beginning of this section, successful estimation based on 

high-frequency datasets requires fast and efficient computational algorithms. The adaptive 

version of a local kernel regression, which is a version of the kernel smoother procedure 

k sm .ad o  in Stata, represents an example of such algorithm. The estimator is defined as a 

weighted average of the A nearest neighbors to the point of interest t. The method selects 

[k/2] neighbors to the left of the target duration t and [A:/2] neighbors to the right of t, 

assigning the weights according to  the distance of neighbors to the target point. In contrast 

to  the regular nearest neighbor estimator, the weights are assigned on the basis of distance 

(rather than the ranks of distance) between the neighbor and the target point f, which 

implies the validity (up to the higher-order terms) of the standard asymptotic formulas for 

kernel smoothers. If the number j* of available durations to the left (right) of the target is 

less than [Ar/2], the estimation is performed using all j* observations to the left (right) and 

the usual number of [A/2] durations to the right (left) of the estimation point. The weights 

for the internal durations (located more than [A/2] sample points away from the boundaries)
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are determined by one of the canonical kernels

^ ■ q u a r t i c ( ^ )  —  ( 1  ' ( / ”* ) "  *

£triweigl»t('') =  ( 1 - U 2)3 -1[_1;1|(U), (3.20)

1Ctricubo(«) =  (1 ~  | i/ |S)3 - lf_ 1;1|(«). (3.21)

111 this dissertation we will report estimation results only for the tricube kernel (3.21) (Cleve­

land [23]). It has the advantage of being twice continuously differentiable with the mass 

concentrated more heavily around the center of the bandwidth spectrum, which reduces the 

influence of distant observations when enough observations in the sample are close to the 

target point.0

This method adapts automatically to the random unbalanced sample design, where the 

heaviest proportion of the sample mass is concentrated at the short durations, and admits 

application of most results from the standard theory of kernel estimation, including the for­

mulas for the asymptotic biases and variances of kernel estimators.' It can be programmed as

a fast iterative procedure with a simple one-in-one-out updating of weights which correspond

to [At/2 ]  left and right nearest-neighbor durations in a  manner similar to the ordinary fe-NN

estimator described in Hardle [63], Chapter 3, for the uniform kernel, with the weighting 

6The nearest-neighbor kernel can be modified to reduce the endpoint bias as explained above in subsection 

3.3.4.
7 Due to the random nature of sample design the proposed tricube kernel is randomly deformed so that 

the effective kernel is asymmetric even in the case of the local constant smoother. In fact, the kernel becomes 

randomly left- or right-skewed, depending on the relationship between the distances of the [k/2] nearest left 

and right neighbors to the target points. The kernel tends to be right skewed for the sample densities with 

a negative first derivative and left skewed for the sample densities with a positive first derivative near the 

estimation point. The overall effect leads to the changes in the standard formulas for the asymptotic bias 

and variance in the random design case. However, in practice the size of distortions is usually small. We 

argue that the distortion of variance is of smaller order of magnitude and does not affect, the asymptotic 

results of the next section. The distortion of bias (relative to the standard kernel) is of order j * / k  and is 

likely to change the formula for the asymptotic bias. In any event, these complications appear a relatively 

small price to pay for the enhanced computational efficiency of the algorithm.
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window slowly moving across the data.

The formulas for the kernel smoothers used in the application in section 3.5 are given

by

h r ]m r,k) 
j+[fc/s

r  I.____________________£  ICr ....
(3.22)

£  ■c , ( s s s s a C n g f e F w )  £  ,
j '= ./- [A :/2 ]  v 7 ,»GTC(A0 ,) )

for the local constant asymmetric k-NN smoother, and by

f ^ m ) (ti\lCr,k)
j + [  fc/2] .

,y+[A:/2| . _ .  \

V  )Cr (  r   ;— r ) V  e x p ( z '  / 3 r ) A t f j t )
. ' = J -  A:/2 v 7 » € 7 e  f (y )

(3.23)

for the local linear asymmetric /r-NN smoother, where the modified kernel £,•(•) is defined 

by formula (3.19) with

i+ [fc /2 | /  \

Cm= £  (*U)-*U'))m£ r  ( /■ _  J)----- y ---------T T 1  E  eXP « 3 r)A f(i ') -
j ' = j —[A:/2] \ m « l X ( i ( j )  t ( y _ [ * , / 2 | ) , t ( j + [A:/2]) R j ) ) /  „ € 7J(f0 ,))

3.3.6 Spline-Based Technique for Hazard R ate Estim ation

The spline-based method for hazard rate estimation, which can be considered an alternative 

to the semiparametric kernel techniques considered above, is a flexible parametric procedure, 

which accommodates a broad variety of shapes of the baseline hazard and mitigates the curse 

of dimensionality associated with nonparametric estimation of the baseline hazard, provided 

that the knots of spline intervals are chosen correctly. According to the approach described 

by Royston and Parmar [117], the logarithm of the baseline cumulative hazard function can 

often be modeled by the cubic spline function of log time. The general function log(f70r(f))
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is approximated by the so-called natural cubic spline, which is by definition constrained to 

a linear form beyond the boundary knots kmm =  log(flllin) and A;max =  log(tmax)- In addition 

to the boundary knots, in internal knots k \ , k2, ..., km are specified, with the param eter in 

governing the model complexity.

The natural cubic spline is written as

\ o g ( H ( i r ( T ) )  =  7 o r  +  l U - T  +  72 r ^ [ ( r )  . . .  +  7 „ , + 1  . ^ ( t ) ,  

where the ,/tli basis function is defined as

U 3 j { r )  =  ( t  k ' j ) +  ^ j i T  ^ 'm in ) +  ( 1  ^ 'in a x )  +

with

Xj = - p— — and iT ~  «)'+ =  max{0. ( r  — «)+}.
" ’m ux ” ’m in

Royston and Parm ar [117] propose selecting the parameter rn by minimizing the Akaike 

information criterion, which is defined as —2 times the log likelihood plus twice the number of 

model parameters. In principle, the location of boundary and internal knots can be estimated 

since they can be treated as additional parameters. However, adding the new parameters 

even for a limited number of knots was found to slow down significantly the convergence of 

the optimization procedure. As a practical solution to this problem, the boundary knots are 

often placed at the most extreme observed durations, whereas the internal knots are chosen 

to divide the observed durations in approximately equal groups.

3.4 A sym p totic  T heory o f C om peting R isks E stim a­

tors

In this section, we assume the Cox proportional hazard model. Extensions of most results to 

the general multiplicative hazard specification are not pursued in this chapter, even though 

the results are mostly analogous to those reviewed here. First, we lay out the conditions
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for the asymptotic normality of the partial likelihood score statistics U,.(/3,.. r) . Then the 

established results are used to derive the asymptotic distribution of the maximum likelihood 

estimator /3,. of parameters /30(. and for the estimators H0r(t,/3r) of the cumulative baseline 

hazard functions H0r(t). We also establish conditions for the asymptotic efficiency of partial 

likelihood estimates of the Cox regression coefficients. The approach follows closely the 

martingale-based techniques of Andersen and Gill [7] using the counting process machinery 

reviewed in Andersen et al. [8].

3.4.1 The Partial Likelihood Score Statistic

We need the following regularity conditions.

Condition P. /io,-(-) are non-negative with

t
j  hQr(u)du <  oo. r =  1..... B.. (3.24)
o

for all t £  [0;r), where r  is a fixed positive number or infinity.

Condition A. There exists a neighborhood B,. of /30,. and the scalar, p-vector and p x p 

matrix functions s ^ ,  and sj.2\  respectively, defined on Br x [0;r] such that for 

rn = 0 .1 ,2 , r =  1,..., R:

(Al) sup |U s ^ ) ( /3 r,t)  -  s(.m)(/3,.,f)|| -^>0 as A  oo;
Pr€Br. <6(0,-r] 11

(A2) s(.'"'(-) are bounded on Br x [0;r) and continuous as functions of f3r € Br 

uniformly in t € [0; r ] ;

(A3) s<?)(A,r,-) are bounded away from zero on [0; r];

(A4) =  S w / r ' ^ M  for 0 r E 8 „  i 6

[o ;r) ;

(A5) S,.(r) =  f  v r (/30r, t)sf.°)(/30r, t)h 0r(t)dt are positive definite, where v r =  s ^ / s ^  —

e f 2 and e,. =  s|.1)/-sr°)-
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C o n d itio n  B . There exists a S > 0 such tha t

Brief explanation of the above conditions is in order. The most significant constraints 

are conditions P  and (A2). Weak convergence results obtained under these regularity con­

ditions will be restricted to sub-intervals of the support of the distribution of the data, 

excluding the right-hand tail. Condition B  is facilitates establishing the Lindeberg con­

dition, and trivially holds for bounded covariates. Condition (A l) guarantees asymptotic 

stability of the functions S)."^, rn = 0.1,2, while the regularity conditions (A3)-(A5) are 

standard in the asymptotic likelihood theory. As the result of these conditions, the limits 

with respect to N  and differentiation with respect to /3,. can be interchanged.

Now consider the vector of score statistics

the score statistics evaluated at /30). and considered as processes in t, are linear combinations 

of stochastic integrals with respect to the local square integrable martingales

which can be written as

" - 1 o o

where

and
N

S ? \ 0 rJ . ) = Y , Y» r m n e M K P r ) -

Note tha t
N

M„r{t) = N nr{t) -  I  ho,.{a)Ynr(u) exp(Z'„/30r)da.
o
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which are orthogonal with quadratic variation process
/.

{Mnr) (f) =  j  h0r(u)Y„r(-u) exp(Z(,/3Qr)du.
0

Denote by —J r{Pr. r) the p x p matrices of second-order derivatives of £cox(P) with 

respect to /3r, r = 1,.... R. Then J r{Pr, r)  can be written as
r

J r ( 0 r.T) =  J  V r(f3r. t)d,N.r(t).
0

where
Y  (R f) — p  (O 4\®2

and

S«2)(/3r ,*) =  exp(Z;,/3,.).

3.4.2 Covariate Effects

T h e o re m  1 (Andersen et al. [8], Theorems VII.2.1-2.2) Assume Condition A and (3.24) 

hold f o r t  =  t . Then the probability that the system, of equations XJ,.((3r.t)  = 0, r  =  1...., R. 

has a unique solution (3 =  l/31, ... ,P n) tends to 1 and (3 —> PQ as N  —*■ oo. If, in addition, 

the Lindeberg-type Condition B  is satisfied, then, as N  oo,

V N (0 r -  p Qr) % M (0, S ,: '( r ) )

and

sup
<€(0;r|

l j r (3 r, t ) - s r (0

hold fo r  each r = 1..... R,.

3.4.3 Cumulative Hazard Functions

T h e o re m  2 (Andersen et al. [8], Theorems VII.2.3-2.6) Assume Conditions A and B  and 

that (3.24) hold, for t, = r . Then y / N ( P r — P 0r) and the processes
i.

Wr(t) = s/N  (% r{ t,P r) ~  H0r(tj) + S iv  ( P r -  p Q,) ' j e r (p 0r.u )h 0r(u)du,
0
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r = 1..... R, are asymptotically independent. The limiting distribution o fW r(t) is that o f a 

zero-mean Gaussian martingale with variance function

/• h,0r(u)d,u 
lo:.--' -  1

(P0mU)

The process ( y W  (H0r(t.f3r) -  H0r(* )));.= ̂ converges weakly to an R-variate Gaussian process 

with, mean zero and covariance function F(s.t) with, the elements r rr>{s.t) given by

•S /.

5 r r ' U T r ( s  A t) + j  e'.(/30r, u.)liQr{u)du • E " 1 (r )  • j  erl{(30r,. u)h0r'(u)du, r .r ’ =  1 , .... R, 
o o

■which can be estimated uniformly consistently in {s. t) €  [0; t ) x  [0; r )  by

dNr{u) /• u)dN,.(u) f E r'{0 r,,u )dN r>{u)\

1 J  s l 0)( p r , «)= J S ? '(0 „ « )  I0 l~'r y r 'r ’ (i '-'r \t- 'r? "7 o ^ r 1 (/^r'> '̂)

The asymptotic covariance of \/~N((3r — /30r) and, \f~N [Har(t. /3r) — #(),.(£)) is

t.
- ^ v V )  /  e,-(/30,., ».)/'• ar{u)d,u. 

a

■which; can be estimated uniformly consistently in t & [0; r )  by

jE , . ( 0 r,u )dN r(u) 

o

Finally, the integrated hazard of type r  for the market conditions characterized by fixed co- 

variates Z0. can be estimated, by Hor(t,f3r) exp(Z'Q0 r). The asymptotic variance of

Ar7 - i rs  [ E r(0 r,u )dN r(u)

V n  (H Qr( t  A.) ex p (Z '3 r) -  HQr(t) exp(Z '& ,.)) 

can be estimated uniformly consistently in t  6  [0 ;r )  by

(  1\0 IiV(exp(Zo/3r))-  ̂ , o(0)
• dNrju)

J Sio)0 r,u,r-

i, _  1
+  f  (E r (/3r . a.) -  Z)'rffr0r(M. & )  • J T 1 (&• r )  • / (E r(3 r! n ) -  Z)<fff0r ( « ,3 r) [ •

o n J
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3.4.4 Local Constant External Estim ator o f Baseline Hazard

Consider the local constant external estimator h0r(f) of the baseline hazard h0r(t) for each 

/• =  1, ....R . Define its compensator /i(’r (t) as

f  f /C,. (fff) dA„r(u; e ) i  -I' Kr f i f )  L  Ynr(u)hor(u) CXP(Zn0 r)dll
h*0r{t) = —^ -------   = — --------- --------------------------------------

i f l C r  ( i f )  S ? \ ( 3 r.u)du (iff-) Sr°\f3r,u)du

T h eo rem  3 (Andersen et al. [8], Theorem VII.2.7) Let t be an interior point in [0;r] and 

assume that, for each r = 1..... R . ho,- is twice continuously differentiable in a neighborhood 

of t .  Assume that Conditions K. A, and B hold and tha,t br = b\f'1 —> 0 as N  —> oo in such 

a ■way that —* oo and limsup Arl//:,f V) < oo. Then random variables

h o r ( t ) - h o r ( t ) - ^ h f'r(t) 2r

are asymptotically independent and

\[n I ( li0r(t) -  hQr(t) -  |& X ( f ) 2r)  ® W , U 2r(t)) as N  

where the asymptotic variances

h0r(t)

oo.

^■(t) = („)?: : /  iC;{u)du
Sr (Por-t) I  t

can be estimated consistently by

N  f  r i f t -  u \  d Nr(u)_  f  r -  ( f ~ u\  d N r ( u )
b r J  r V K  )  s l 0)( p r.u )2 '

The second derivative o f the hazard functions hff. in the bias term can be estimated, consis­

tently (although with a bias o f its own) by

Tc  = f t ]  * r  ( t ^ )  i w w M

where 1C*, r = 1..... R. are twice differentiable kernels satisfying condition K  and b* are 

corresponding bandwidths that may be different from, /Cr and br.
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3.5 E stim ation  o f B aseline Hazard R ates for Sell Events

To provide an example of application of nonparametric baseline hazard estimation techniques 

developed in this chapter, consider estimation of the baseline hazard functions for selected 

types out of the pull of events identified as seller-initiated competing risks in Chapter 4.8 

The risk types and the numbering of corresponding graphs are summarized in Table 3.1. 

The shapes of baseline hazard estimates for the symmetric buyer-initiated events are not 

reported since they look similar to those shown on the graphs. To conserve the space, we 

also omit the graphs for some baseline hazard estimates of seller-initiated events, when they 

are very similar to those shown on the graphs.

Figures 3.4-3.14 display the baseline hazard estimates har(t) (shown in white bold 

pattern) for the Cox proportional hazard specification (3.4) with the full set of covariates 

shown in Table 4.2. To illustrate the effect of the reduced covariate set on the shape of 

the baseline hazard rates, we also display (in darker bold pattern) the baseline hazard es­

timates when the full set of covariates from Table 4.2 is replaced by the smaller set of five 

covariates Spread, , C?i,id, Side, and Slippage, which may be considered most popular 

characteristics of market liquidity in the microstructure literature and a  good starting point 

in empirical model building.

The asymptotic standard errors for all estimators are based on the full and restricted 

sets of covariates and shown by shaded grey patterns and unshaded light curves, respectively, 

in the lower sections of the graphs. The standard errors of estimates are calculated by the 

k-nearest neighbor formula for asymptotic variance cuj:(t) of the external smoother, which are 

obtained from the fixed-bandwidth formulas of subsection 3.4.4 by rescaling the window size 

so that it covers exactly k sample points. All estimators are based on the locally constant 

tricube kernel (3.21) with k /N  =  20% of the sample size, and reported for the range of 

durations up to 30 seconds since last publicly observable event (identified by the occurrence

8Description of seller-initiated events can be found in section 4.2. A brief summary of seller-initiated 

events is given by Table 4.1.
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of markers of type Al through A6, B l through B6, AC6, or BCG, corresponding to the 

publicly observable events).9

The larger covariate set reduces the steepness of negative slope for all estimated baseline 

hazard functions, especially near the origin. One obvious explanation to this effect can 

be based 011 the observation tha t the larger set of covariates captures a larger portion of 

unaccounted heterogeneity due to time-varying market conditions and reduces the variance 

of mixing distribution over this unobserved heterogeneity. However, for almost all competing 

risks there remains substantial unaccounted heterogeneity, as the hazard rate patterns remain 

monotonically decreasing even after the large set of covariates has been accounted for in 

the Cox proportional hazard specification. Even though the tentative explanation may be 

misspecification of the parametric part of our model, or misclassification of events, the more 

serious potential source of unaccounted heterogeneity in our model is the lack of public 

and private information variables, such as messages from Reuters newswire, news from the 

futures and forward segments of the market, etc. Since it would be unrealistic to capture 

all unobserved heterogeneity in a single empirical model, it is im portant to be aware of this 

effect, constructing the models and using the estimation techniques tha t take this possibility 

into account.

3.6 Sim ulation o f  C om peting R isks

The semiparametric bootstrap is a powerful resampling device used to approximate the dis­

tribution of statistics of interest. Even though standard asymptotic results are available for 

estimators of hazard rates, survivor functions, and the covariate effects in the Cox regression 

specification, there is no widely accepted method for inference about quantiles of the empir­

ical duration distribution conditional on the specified vector of covariates. In the bandwidth

9See the formal explanation of observable events in section 3.2. The complete classification of buyer- 

initiated events B1-B14 and BCG-BCJ14 is analogous to the classification of seller-initiated events A1-A14  

and ACG-AC14 given in Table 4.1.
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selection problem the distribution of the mean integrated standard error (MISE), or any 

other criterion of choice, has to be approximated for a range of bandwidths. Bootstrapping 

might be the only feasible technique to obtain this distribution in practice.

3.6.1 A lternative Sim ulation Procedures

Since the bootstrap method of forming confidence intervals is not uniquely defined, there 

are usually several ways to draw the bootstrap samples when dealing with complex data. 

Consider, for example, the simple bootstrap procedure, which can be outlined as follows:

A . P a ire d  b o o ts tra p  p ro c e d u re

Randomly draw the triplets (T^Kr^K  Z ^ )  =  Z ^ ) ^ =l with replacements from the

original data set (T„. r„, Z„)^=1.

Unfortunately, this simple procedure turns out numerically unstable in the context of 

Cox regression model with competing risks. Therefore we present two alternative bootstrap 

algorithms based on the general ideas of Marron [98] and Gonzalez-Manteiga et al. [51], 

who recommended to use “smoothed bootstraps” in order to approximate biases in hazard 

rate estimation with censored observations. There are several possible modifications of their 

smoothing procedures, as the bootstrapping tends to be more complicated in the presence 

of multiple sources of risk. Bearing in mind potential applications of these methods to large 

financial data sets, additional issues such as computational efficiency and numerical stability 

in the range of thin sample design must be taken into consideration.

The main difference between the bootstrap algorithms presented here is with regard 

to  when the “smoothing” is done. Our algorithms parallel those described in Gonzalez- 

Manteiga et al. [51], except tha t we use the external smoother instead of the internal kernel 

estimator at the smoothing steps of the algorithms.
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B. Constrained smoothed-censored (CSC) resampling plan

This m ethod employs a variant of Efron’s [38] original bootstrap idea. The method proceeds 

as follows:

1. Calculate the kernel smoothed versions liQ,.(t\ICr. b,.) of the baseline hazard rates of 

independent competing risks r = 1 .2 ..... R.

2. Draw the bootstrap samples 2Sl\  Z(2\  .... Z^B> of covariate vectors from the empirical 

distribution of covariates. Each represents a single bootstrap simulation of the 

market conditions and consists of N  observations \  .... z ^ .

3. Draw the bootstrap samples T].1'. TjrK ..., of the latent durations r  =  1.2 ..... R  

generated by the CPH competing risks with the baseline hazard rates hQr and covariates

). Each represents a single bootstrap simulation of type-/1 latent durations and 

consists of N  observations Ti^.To1’) , .... T^l-

4. For each realization (T[/’l)^=1, 6 =  1 .2 ..... B , construct the bootstrap pair (T^’\  r ^ )  =

where =  min and rj^ = a rg m in T ^ .
' - 1 R r = l  n.

C. Constrained censored-smoothed (CCS) resampling plan

This m ethod modifies Efron’s original resampling scheme in such a way that the smoothing 

is performed at the last step. The sequence of steps is following:

1. Draw the bootstrap samples Z d ),Z (2\  .... Z ^  of covariate vectors from the empirical 

distribution of covariates. Each Z ^  represents a single bootstrap simulation of the 

market conditions that consists of N  observations z ^ . z ^ ,  ...,zjy .

2. Using the raw (unsmoothed) Nelson-Aalen baseline hazards Hnr(t. (3r) and the boot­

strapped covariates Z ^ K Z ® , ....Z^BK draw the bootstrap samples T[b,T].2\  ...,T[.S)
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of the unsmoothed latent durations r =  1 .2 ..... R.  Each represents a single boot­

strap simulation of type-/' latent durations and consists of N  observations T ^ .\ T ^ \
r p ( l> )

. . . ,  l N r .

3. For each bootstrap realization ( T ^ ) ^ , , b = compute where

r W =  argminTjf.h
/ • = I ......./.’

4. Draw the bootstrap samples T^2). .... T (B) of the realized durations. Each 

consists of N  observations T ^ K T ^ .  - representing the draws of the latent dura­

tions T.W = T $  generated by a smoothed empirical distribution of the notional risk 

r — r W anci the covariates z j ^ .

3.6.2 Performance o f B ootstrap Procedures

Burr [18] is the first systematic Monte Carlo study of the performance conducted for a 

number of bootstrap procedures and bootstrap confidence intervals in the Cox proportional 

hazard model. In the case of uninformative censoring Burr [18] finds tha t robust asymptotic 

confidence intervals generally perform better for the covariate effects, while the bootstrap 

methods provide better approximations to the confidence intervals for the survivor functions 

and the median survival times. The best procedure appears to  depend on the design, but 

the model-based resampling generally outperforms the paired sampling. The bootstrap- 

t intervals were found to be consistently outperformed by one of the simpler bootstrap 

intervals, even though the bootstrap quantile intervals have better asymptotic convergence 

properties. Also, a non-trivial interaction effect between the method of drawing the sample 

and the method of forming confidence intervals was detected by Burr [18].

The performance of bootstrap procedures requires more thorough investigation in the 

competing risks environment, especially when the number of risk types R, grows asymptoti­

cally with N  at the slower rate. These issues will remain on the research agenda in the near 

future.
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3 .7  C onclusion

This chapter presents the review of asymptotic properties of the hazard function estimators 

in the framework of Cox proportional hazard model. Even though in practical applications 

to high-frequency data, such as the one presented in the next chapter, the asymptotic theory 

appears to work well, its relevance in applications to the samples of moderate size needs 

to be analyzed more carefully. Also, it is desirable to establish an automatic bandwidth 

selection procedure that works well for large samples as well as samples of moderate size. 

These issues are left for the future research and will not be pursued in this thesis.

3.8 A ppendix: Figures and Table

AType o f  event

/• = 2 _ (B. buver-initiatcd) Ab(time)
1 t %

r  =  1 _

1 1 1 1
1 !1 1 1 1 • 1 1 1

(S. seller-initiated)! ^ Ab(timc)

o-----------1

w

17— 2 

1--------

• l ”
! !1 |
i :1 1 
1 11 1

1------------------------• --------------• -------------- <>------------------------->
1 1 12 h  (a 15 Calendar time

Observe the sequence of events:
Types: {2,1, 2 ,2 ,2 , 1, ...}

{B, S, B, B, B, S, ...} 
Durations: {/j, (2, *3, t*, ts, ...}

Figure 3.1: Hypothetical event history in the case of two competing risks

The types B and S of two competing risks on Figure 3.1 are identified by the occurences of 
buyer- and seller-initiated events (quotes or transactions).
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Consider interval n = 2 

AType o f  risk, i.e., whether next event is S or B

r = 2  (B, buyer-initiated) Process N i,,( fy )

(S, seller-ini^ated) Process

i n  i  2 n

m in{/ln,/2»}

t \ n Duration

(time interval since 
last observed event)

Figure 3.2: Stylized graphical presentation of the competition between two types of risk

Figure 3.2 displays in detail epoch n  =  2. which is initiated by the event of type S mid ends with an 
event of type B. as shown on Figure 3.1. The event of type S that could have occured t \ n seconds after the 
beginning of epoch n  =  2 is censored by the early realization of the competing risk B at time ton <  t \ n .
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Add an unobservable type of event, r = 3

AType o f  risk

/• = 3 _  _ Process Ny„(hi )

/- = 2

P ^

Process N 2n(Li)

/• =  1

w
hf,

Process N  \„(Li)
1 *

a -----------<i----- i>—I

Tiiiiiiiiii»-------------------------- 1-------- 1--------------------- >■
^  f n t -a

T h e se  cven'ls can n o t be  o bserved , 

so the d o c k  is not reset

1 1„ Duration

(tim e interval since 

last observed event)

Figure 3.3: Stylized graphical presentation of the competition between two observable and 

one unobservable types of risk

Figure 3.3 displays epoch ft =  2, which is initiated by the event of type S and ends with an event 
of type B. as shown on Figure 3.1. The event of type V =  2 marking the end of epoch is preceded by two 
occurrences of unobserved events of type r  =  3. that remain undetected on the screens but might play 
important role for the future market dynamics.
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Table 3.1: Selected seller-initiated events and graphs of their baseline hazard functions

Type of sell-side event Graph and page number

A2: Sell market order Fig.3.4, p .105

A3: Sell limit order a t P\m Fig.3.5, p .106

A5: Sell limit order a t P 1!ik — 1 Fig.3.6, p. 106

A6: Sell limit order a t Pa,sk Fig.3.7, p. 107

A7: Sell limit order at Pask +  1 Fig.3.8, p.107

A9: Sell limit order a t PaHk +  3 Fig.3.9, p. 108

A12: Sell in (P ^ k +  5; Pask +  10] Fig.3.10, p.108

AC6: Cancel a t Pilsk Fig.3.11, p.109

AC7: Cancel a t Pask +  1 Fig.3.12, p.109

AC9: Cancel a t P(lsk 4- 3 Fig.3.13, p.110

AC12: Cancel in (P.usk +  5; Pl)Sk +  10] Fig.3.14, p.110

Figures 3.4-3.14 on the next six pages display the baseline hazard estimates h,Qr ( t )  (shown in a bold 
light pattern) for the Cox proportional hazard specification (3.4) with the full set of covariates from Table 
4.2. and the baseline hazard estimates (shown in a bold grey pattern) for a smaller set of covariates selected 
as explained in section 3.5. The absolute values of asymptotic standard errors for the estimated hazard 
rates (shown by a shaded pattern for the full set of covariates and by a lighter curve above this pattern Ibr 
the smaller set of covariates) are calculated from a k -N N  version of formula for the asymptotic variance of 
external smoother in subsection 3.4.4.
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S u b m i t  S e l l  M a r k e t  O r de r .  Ih v  2<>” <>. T n e u b c  K e r n e l

I) 10 20 .1
T i m e  ( s e c o n d s )  s m e e  Las t  M a rk e r

E xte rna l  k - N N  E s t im a te s  o f  B ase l in e  1 l a z a r d  R ates ,  w i th  A sy .S t .E r ro r s

Figure 3.4: Baseline hazard rates for sell market order arrival events (A2)
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T i m e  ( s e c o n d s )  s ince  l . as i  M a r k e r

E x te rn a l  k - N N  E s t im a te s  o f  B a s e l in e  H a za rd  R a tes ,  w i t h  A s y .S t .  E r ro rs

Figure 3.5: Baseline hazard rates for sell limit order arrival events a t P* =  Pbid (A3)

S u b m i t  I < > at i ’A s k -1 ( a n d  a b o v e  I’ H n l j .  H w  2i>"«.  I ' n c u h e  K e rn e l

I im e  ( se cm id s)  s ince  1 asi  M a r k e r

E xte rna l  k -N N  E s t im a ie s  o f  B a s e l in e  H a z a rd  Kates ,  w i th  A s v . S t . E r r o r s

Figure 3.6: Baseline hazard rates for sell limit order arrival events at P* =  Pask — 1 (A5)
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Figure 3.7: Baseline hazard rates for sell limit order arrival events at P* =  Pask (A6)

S u b m i l  1 . 0  a!  I *As k  - I .  B w  2 0 " . , .  I ' r i c u b e  k e r n e l

0 4

01

I imcI
Hxternal k - N N  h s t i m a l e s  o f  B as e l in e  I l a / a r d  R ales ,  w ith  A sv .S l .F r ro rs

Figure 3.8: Baseline hazard rates for sell limit order arrival events at P* = P^k + 1 (A
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I 'une  ( s e c o n d s )  s in c e  l . as i  M a r k e r

Externa l  k - N N  E s t im a te s  o f  B a s e l in e  H a z a r d  R ates ,  w i th  A s y . S t . E r r o r s

Figure 3.9: Baseline hazard rates for sell limit order arrival events a t P* =  F^k +  3 (A9)

Su b m i l  1 . 0  h c i u e e n  I1 Ask  • (> a n d  I1 Ask  • 10. H u  2 0 "  n. I r t c uhe  Ke rn e l

! un e  ( s e c o n d ' )  s in c e  I as!  M a r k e r

External k - N N  E s t im a te s  o f  B as e l in e  I l a / a r i l  R ates ,  w i th  A s y . S t . E r r o r s

Figure 3.10: Baseline hazard rates for sell limit order arrivals between Pask +  6 and Pask +10 

(A12)
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Figure 3.11: Baseline hazard rates for limit order cancellation events at P* =  P ^ t (AC6)

( , ' a n c  I ( )  a t  P A s k  • I . H \ \  2()n <>. ! n e u l v  k o m o l

0 1

01

ii

) m ic  i •m.v u i k K  ) M iicc  I a s i  M a r k e r

R x tc rn a l  k - N N  I-istimalcs o f  B a s e l in e  I la /arcl R ales ,  w i th  A s y .S t .H rm rs

Figure 3.12: Baseline hazard rates for limit order cancellation events at P* =  P^k + 1  (AC7)
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Ca n t : .  I . ( ) a i  I’A s k  • 1.  H u  JO "  a.  I r i c u h o  k e r n e l

0 10 20 
1 l i n e  ( se c o n d s )  s inc e  L a s t  M a r k e r

E x te r n a l  k - N N  E s t im a te s  o f  B a s e l in e  H a z a rd  R ates ,  w i th  A s v .S t .E r ro r s

Figure 3.13: Baseline hazard rates for limit order cancellation events at P* =  Pasu +  3 (AC9)

0 in JO sO
I l ine  I s e n  l ink  i s inc e  I a  si M a r k e r

E x te rn a l  k - N N  E s t im a te s  o f  B a s e l in e  I la /a r t l  R ates ,  w i th  A s y .S t .E r ro r s

Figure 3.14: Baseline hazard rates for limit order cancellations between jFksk+6 and Pask+  10 

(AC12)
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Chapter 4

Endogenous D eterm ination  of 

Liquidity in C ontinuous Time: A n  

Index-Based M odel o f A ctivity  in the  

Electronic Limit Order Book

The effect of information on price determination and liquidity has a long history of research 

in market microstructure literature. In the foreign exchange market, the main source of 

differential information is the customer order flow. The dealer accepting a large customer 

order takes a long or short inventory position which is associated with the risk of depreciation 

or appreciation. If the information contained in the customer order is short-lived, the dealer 

would usually attem pt to close his position fairly quickly (sometimes in a m atter of minutes) 

by making a trade on the interdealer market, through traditional brokers, or via an electronic 

brokerage system. However, to benefit from his private information, the dealer may split 

the order and trade its portions gradually over time using market orders. Alternatively, the 

dealer may attem pt to receive a  better price by placing one or several limit orders and being 

prepared to deal with the risk of uncertain execution. Finally, dumping a large quantity

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

on the market by placing the large limit order entails the risk of getting adverse price in 

exchange for the chance of speedy execution.

Three measures are commonly used in the market microstructure literature to charac­

terize liquidity: (1) the bid-a.sk spread, defined as the difference between the lowest ask and 

the highest bid prices currently available on the market; (2) the market depth on the ask and 

bid sides, usually defined by the quantities available for immediate purchase or sale a t the 

best ask and bid quotes; and (3) the time elapsing before the trade can be performed a t the 

“favorable” price. If arrival of a large order signals high probability of private information 

on the market, then a  large buy limit order would lead to a temporary loss of liquidity on 

the ask side resulting in higher cancellation probabilities for the existing sell orders, and the 

larger spreads tha t would not be restored until the ask price moves up to a higher level. 

However, since dealers can rarely be certain that large customer orders come from informed 

customers and contain private information not incorporated in the market price, it can also 

be argued that large orders originate from uninformed liquidity traders. The possible ar­

gument can be based on the observation that uninformed traders have more incentives to 

place large orders thereby increasing the competition and tightening the bid-ask spread. The 

dataset on quotes and transactions used in this chapter can shed some light on this issue 

and discriminate empirically between these two hypotheses.

The time dimension brings in additional flavor to this dichotomy. In early microstruc­

ture literature the evolution of market was studied in activity time, and the duration between 

consecutive quotes or transactions was usually dismissed as uninformative, or treated as an 

additional exogenous explanatory variable. More recently it has been argued that the lack of 

activity and absence of transactions can represent the events that could be used to predict 

market dynamics, a t least in the near future. Among the first attem pts to investigate analyt­

ically the trade-off between executing a  trade using market versus limit orders analytically 

stands out the paper by Parlour [112] who models the behavior of an agent submitting a 

limit or market order depending on the state of the limit order book. The agent placing an 

order in Parlours model evaluates the trade-off between the market impact of her trading
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strategy and the probability of her own order execution.

Empirical research on the limit order markets has long been hampered by the lack 

of detailed order-level data. Until recently, most order-level data came from the stock ex­

changes organized as electronic limit order books. Examples are Biais, Hillion, and Spatt 

[12], Hamao and Hasbrouck [59], Harris and Hasbrouck [65], Hollifield, Miller, and Sandas 

[74], who investigate empirical properties of limit order markets in Paris, Tokyo, New York, 

and Stockholm. Even though there are now several electronic systems trading currencies, 

corporate and government bonds, and other financial instruments, the information disclosure 

restrictions on the providers of such systems in the foreign exchange markets usually make 

the detailed order-level da ta  unavailable for academic researchers.

The goal of the present chapter is to enhance our understanding of the short-run 

liquidity in the order driven segment of the foreign exchange market. It presents an empirical 

study of interaction between the trade flow, market bid-ask spread, and depth on the bid and 

ask sides of Reuters D2000-2, which was one of the major liquidity providers on the foreign 

exchange market in the nineties, and investigates the roles played by these variables in the 

process of price formation. The competing risks model is extended and applied to obtain a 

decomposition the order flow into the components identified by direction and aggressiveness 

of trading activity. While the decomposition of the order flow is determined endogenously 

from the past trading activity, part of the information hidden in the baseline hazard rates of 

competing risks can be extracted by application of the econometric techniques reviewed in 

Chapter 3. The signed order flow defined in this dissertation as the number of buyer-initiated 

transactions less the number of seller-initiated transactions serves as the major vehicle of 

information discovery (but not necessarily the ultimate source of information).

Since the data set used in this chapter lacks information on traders’ identities, the 

empirical model does not tackle explicitly the agents’ trading strategies.1 Instead, the model 

can be viewed as a comprehensive description of partially disaggregated trading activity,

1 The data set used in the empirical analysis does not allow explicit replication of traders’ behavior since 

it does not contain any information on the identities of market participants.
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where the level of disaggregation is determined by the data. It represents an agnostic be­

havioral framework for learning about empirical regularities in the markets populated by 

multiple interacting agents who may possess heterogeneous information and employ com­

plex and diverse trading strategies. It will be shown how the model can be used to generate 

probability forecasts of short-term market dynamics that might facilitate the development 

of dynamic trading strategies by dealers and their sponsors.

This chapter proceeds by the following plan. Section 4.1 presents a stylized model of 

trading activity in the idealized limit order market reminiscent of the market studied in the 

empirical application. Then it provides motivation and poses several empirical questions that 

will be investigated in the subsequent sections. Section 4.2 expands the covariate structure of 

the basic competing risks model from Chapter 2 th a t incorporates a broad range of observable 

limit order book characteristics. The estimated covariate indices capture a large portion 

of cross-sectional and serial correlation between the various types of the limit order book 

trading activity. Section 4.3 discusses the estimates of the covariate effects drawing special 

attention to the publicly observable limit order book information and the lagged activity 

measures such as the past order flow and the cumulative counts of recent transactions. 

Application of the principal component analysis (PCA) to the covariate indices in section 

4.4 identifies five pervasive factors capturing 85% of the observed activity and leading to 

substantial data  compression. Each of the first five pervasive PCA factors has distinct 

characteristics tha t facilitate their interpretation as alternative measures of aggregate market 

activity. Section 4.5 outlines the results of simulation experiments and cast some light on 

the strengths and deficiencies of the modeling methodology. Finally, section 4.6 reviews 

the probability forecasting formulas and applies some of the graphical tools to evaluation 

of goodness-of-fit and out-of-sample performance of the index-based model of limit order 

book activity. I t is found that the model has good predictive power, at least relative to 

popular simple moving average-type forecasting rules. In summary, the competing risks 

methodology is found to be a valuable tool for short-term forecasting of market activity and 

its outcomes, and for understanding the behavior of heterogeneous agents in a competitive
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market environment.

4.1 The A natom y of a P ure Limit Order M arket

To motivate the modeling strategy and provide the background for the empirical results of 

this chapter, we first give a stylized description of the automated limit order book. While 

technical details and the peculiarities of actual limit order markets must always be accounted 

for in specific applications, our presentation here is deliberately simplified. Even though it 

has been developed bearing in mind an application to the specific limit order market in 

section 4.2. in this informal review we draw reader’s attention to the salient features shared 

by all markets organized as pure electronic limit order books.

4.1.1 Stylized D escription of Electronic Limit Order Book

In the forthcoming development, the limit order is defined as an instruction to sell (or buy) 

a certain number of units of financial asset at a certain price, which is called the limit order 

price. We define market order as an instruction to sell (or buy) a certain number of units of 

financial asset immediately a t the best available market price. While market orders always 

face full and immediate execution, the limit orders may face only partial execution, or may 

not be filled at all, in which case the untraded portion of the limit order is placed into one 

of the two queues (separate for sell and for buy limit orders) and kept in the queue until the 

order is explicitly cancelled by the trader or hit by the arriving market or limit order.

A bank dealer can enter a buy or sell limit order into the system at any moment of 

time, indicating the limit order price and the quantity of foreign exchange (usually an integer 

number, in millions of US dollars) that he wants to trade. After an attem pt to match the 

incoming order with outstanding orders submitted by other traders on the opposite side of 

the limit order book, the new order is entered into the system. Additionally, traders have 

an option to submit a buy or sell market order indicating the price and the quantity. In this

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

case, after an attem pt to match the incoming market order with outstanding limit orders a t 

the price equal to the incoming market order, an unexecuted portion of the market order is 

cancelled automatically and a confirmation message to the trader is sent. The system allows 

traders to monitor their limit orders that can be removed by a hit of a “Cancel” key a t any 

moment of time.

The market structure which consists of the two queues for buy and sell limit orders, 

along with the specified trading protocol describing the priority of limit order execution is 

called the limit order book. The queues of sell and buy limit orders can be interpreted as 

approximate representations of excess supply and demand curves for the traded financial 

asset (Figure 4.1). The priority of limit orders in the book depends on the details and the 

trading protocol of the particular system. All orders are submitted anonymously as the 

identity of a foreign exchange trader is considered a strictly confidential information and 

never disclosed.

Only a handful of real financial markets are organized as pure electronic limit order 

books, such as the one described above. In practice virtually any real limit order market 

represents a hybrid system, which would be hard to analyze using the simple model presented 

in this chapter. For example, the trader submitting a market order in Reuters D2000-2 must 

provide not only the quantity but also the price, which does not have to be (but usually is) 

the best market price available on the buy or sell side of the market a t the time of submission. 

After the market order is subm itted it is matched only with the limit orders subm itted a t 

the prices equal to the arriving market order price. The unfilled portion of the market order 

is cancelled automatically. Unlike the market orders, aggressive limit orders submitted at 

the prices tha t are different from the current best price can obtain price improvement, as 

the outstanding limit orders in the book submitted at the better prices receive priority in 

execution. The traders demanding early execution may be willing to submit a market order 

and sacrifice the difference between the best bid and ask quotes (the bid-ask spread), or 

submit a limit order which gives them a chance of getting a better price a t the expense 

of execution uncertainty. The seller who is willing to receive a better execution price may
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submit a limit order with a relatively high price and be prepared to wait longer and deal with 

the risk of execution uncertainty in the event th a t the market price moves in the opposite 

direction, and with the risk of being “picked off” in the event of a sudden increase in the 

market price beyond the level considered reasonable by this limit order trader.

The dynamics of a limit order market are illustrated on a series of graphs (Figures 

4.2-4.8). Figure 4.2 provides graphical representation of the situation when a  limit order 

trader submits a bid to buy one million dollars a t the price 1.7510 DEM per US dollar, which 

exceeds by 0.01 Pfennig the previous best market price 1.7509 DEM, but still 0.02 Pfennig 

short of the price that guarantees immediate execution. Alternatively, the trader can submit 

a less aggressive limit buy order at the current best market price (Figure 4.3). In such event 

the arriving limit order receives a lower priority in comparison to the limit order tha t has 

been previously submitted to the limit order book at the same price. In the first case the 

traders watching monitors of the trading screens notice immediately the increase in the best 

bid market price, while in the second case they will only observe the increase in the quantity 

available at the unchanged best bid market price. Whether and how this public information 

arrival affects the behavior of other traders remains one of the central issues in the empirical 

and theoretical market microstructure literature.

The limit order buyer has yet another option. He can avoid revealing any information 

to the market about his intentions and willingness to trade if he submits a subsidiary limit 

order, which can be an order to  buy at the price just below the current bid market price 

(Figure 4.4) or two ticks (minimal increments) below the current bid market price (Figure 

4.5). In both cases the best market prices and quantities available to sellers and buyers at 

these prices remain unchanged. Therefore, the information on the screens is not affected by 

arrivals of subsidiary limit orders.

The last three diagrams provide illustrations of the effects of a subsidiary limit or­

der cancellation (Figure 4.6), a market order-initiated transaction followed by immediate 

cancellation of the portion of order which cannot be matched a t the best sell market price 

(Figure 4.7), and a similar transaction initiated by an aggressive limit order buyer (Figure
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4.8). Note the difference between the effect of market versus aggressive limit order arrival 

on the market liquidity. While the market order buyer only consumes the liquidity available 

at the best market sell price of DEM 1.7512 per dollar, the limit order buyer also provides 

liquidity at this price, once it becomes clear that the quantity available for sale a t this price 

is insufficient to satisfy his demand for liquidity. Since the information content and the role 

played by aggressive limit orders in liquidity provision can be different from the role played 

by market orders, it is im portant to differentiate between these two types of events as they 

might be used by traders possessing distinct information or having different beliefs and risk 

attitude.

In the liquid financial markets such as the segment of foreign exchange market studied 

in this work, interactions between the limit order arrivals, cancellations, and transactions, 

similar to those described above, occur virtually every second. Figure 4.9 shows a represen­

tative subsample of the continuous time, which was the result of such interaction. The time 

period on Figure 4.9 covers ten minutes of moderately active morning trading on Monday, 

October 6, 1997. The light solid curves show the time series plots of best bid and ask prices 

available on the market a t any moment of time. The white crosses and circles illustrate, 

respectively, the times and the prices of buyer- and seller-initiated transactions. The chart 

on Figure 4.9 provides an illustration of the empirical fact that much of the activity in the 

foreign exchange market is not accompanied by any trades, but rather represents the reac­

tion of traders submitting and cancelling limit orders to prior market events. The analysis 

of dynamic interaction of limit order traders using the screen information on the limit order 

book will be the main object of investigation in the remainder of this dissertation.

4.1.2 M otivation and Limits of the Econometric Approach

The microstructure approach to foreign exchange determination2 postulates that the order

flow (broadly defined as the sequence of buyer- and seller-initiated trades) is the only variable

2This approach was popularized by Lyons [96]: see also a brief review of the key ideas in Chapter 1 of 

this dissertation, and the policy implications in Lyons [97].
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explaining the long-range dynamics of the foreign exchange. The microstructure approach, 

which can be justified theoretically by the ability of the order flow to capture the prevailing 

motives of the buyers and sellers who form their beliefs and exploit information on the future 

price dynamics, has found a solid support in the recent empirical literature uncovering the 

ability of the order flow to explain a large share of movements in the major floating exchange 

rates3. It is commonly assumed that the beliefs of market participants formed on the basis of 

differential information find their outlet in the form of order flow. Even though the order flow 

ultimately impounds the traders’ interpretation of private and public information about the 

fundamentals, we take a stand that in the short run the order flow represents the dominant 

mechanism transforming the beliefs of traders into the dynamic pattern of buyer- and seller- 

initiated transaction prices. However, for a number of reasons, 110 attem pt to model this 

mechanism explicitly will be made in this work.

Since this chapter does not attem pt to capture dynamic effects of the lags longer than 

15 minutes, the key order flow-related variables driving the dynamics of notional hazard rates 

will be the counts of buyer- and seller initiated trades in the five-second periods immediately 

preceding the sub-epoch, and the similar counts from the earlier history. We deliberately 

bypass macroeconomic fundamentals as there is remarkably little evidence tha t macroeco­

nomic variables have any consistent effect at the ultra-short horizons which are the focus of 

this study.4 Similarly, we restrict the role of the past prices emphasized in the literature on 

technical analysis of foreign exchange markets, to the price differences between the last and 

the second-to-last trades that occur prior to the beginning of the analyzed epoch.

It is im portant to stress tha t no a priori assumptions will be made about the valuation 

of foreign exchange. In our opinion, the ultimate value of foreign exchange is impossible to 

define without the reference to the “efficient price” and strong assumptions about its time 

series properties. In the financial markets literature it is often assumed that the “efficient

3See, for example, Evans and Lyons [43].
4 The interest rate news announcements appear to be the only exception but even those take usually 

several hours to be absorbed in the market; price.
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price” is a continuous martingale driven by a Brownian motion with constant volatility.5 

This assumption is very intuitive and appears well justified when observation intervals are 

monthly, weekly, or even, with some reservations, daily, but appears to be at odds with 

the main objective of market microstructure literature which aims to study the process of 

price formation.6 It is especially im portant to avoid making such a strong assumption at 

the high and ultra-high frequencies when even the very notion of “efficient price” becomes 

less transparent because of the price discreteness, illiquidity, bid-ask bounce, asynchronous 

trading,7 and other effects which are a t the center of market microstructure research agenda. 

The broadly recognized and accepted empirical fact that even the most sophisticated agents 

may have differential beliefs makes virtually any a priori assumption about the underlying 

fundamental value difficult to defend. However, the agents’ information and beliefs, which 

are intrinsically unobservable, cannot be structured without making additional identifying 

assumptions about the process of information discovery.

In our agnostic approach, we focus attention on the hazard rates of alternative events 

and formulate the model using only a handful of observable characteristics that can be 

inferred from a subset of publicly available data. Thus, we postulate tha t the limit order 

book is the only medium for the price dynamics. No m atter what foreign exchange rates -  

bid, ask, or the actual transaction prices -  are considered, their dynamics are thought to be 

driven by interaction of supply and demand of multiple agents with differential information, 

horizons, beliefs, and trading strategies.

As the exact moments of information arrivals are unavailable from the data, and rarely 

can be identified in practice, difficulties arise in determining a good proxy for information.

Trading volume has been by far the most frequently used proxy in the empirical studies of

5In the modern literature, more realistic assumptions about dynamic properties of the volatility and the 

drift term are usually made.
6Hasbrouck [67] contains a nice discussion of the role of the ‘'efficient price" assumption in the market

microstructure literature.
7 Chapter 3 in Campbell, Lo, and MacKinlay [19] summarizes the early econometric studies that made 

attempts to resolve these problems.
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stock returns. However, Jones, Kaul, and Lipson [79] in a comparative study of different 

information proxies demonstrate that trading volume has the same informational content 

as the number of trades. Similarly, Marsh and Rock [99] show that the net order flow 

(the number of seller-initiated minus the number of buyer-initiated transactions) explains 

as much of the price variation as does the signed volume of trade. Geman and Ane [48] 

show that the moments of increments of the time deformation process tha t makes returns 

on a  stock market index normal closely match the moments of the number of trades for that 

index per minute. All this and other evidence indicates that the signed number of trades 

could be a better proxy for the information arrival than trading volume and may be an 

im portant factor behind the market volatility, and its persistence. Moreover, the occurrence 

and direction of trades are readily observable on Reuters D2000-2 trading screens, to the 

extent tha t a trader can distinguish between the flashes on the screen tha t accompany any 

new transaction that occur in the system. In view of this positive evidence and to the extent 

tha t other information proxies such as the number of quote changes, price changes, and so 

on, used in the empirical literature produced mixed results, we take the general premise of 

the order flow approach to exchange rate determination (Lyons [96]) and accept the signed 

number of trades as a  primary vehicle behind the information arrival process.

4.1.3 Empirical Questions

In this chapter the following issues will be investigated:

1. dynamic links between the order flow and various types of market activity;

2. the price formation mechanism in electronic limit order markets and the role of order 

flow components, in particular, passive versus aggressive order flow;

3. the out-of-sample forecasting power of the order flow and other variables associated 

with limit order book trading.
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To keep this work focused on a relatively limited set of issues and avoid additional 

methodological and practical complications, we do not model seasonal effects and clustering 

of orders a t the round numbers (multiples of five ticks, in the case of DEM/USD exchange 

rate). The intraday seasonality is undoubtedly an important empirical feature of virtually 

any financial data. Even though, in principle, the mechanical introduction of time-of-the-day 

diurnal effects or a simple deterministic trend in the specification of hazard rates may lead to 

a slightly improved fit of the model, this will involve additional methodological and practical 

problems. A substantial part of the detected seasonality is likely to be spurious, since the 

trading history covered by our data  set includes only five full trading days. In turn, this may 

lead to incorrect inferences about the effects of other covariates, which are the main focus 

of the present chapter.

We also refrain from modeling explicitly the empirically relevant features of real trading 

process such as random communication delays and failures, lack of mutual credit agreement 

among counterparties, occasional violations of order priority, potential implications of the 

complex architecture of communication networks, and so on. For most of this study we also 

do not distinguish between the market information and individual trader information which 

may be displayed in different sections of the Reuters D2000-2 trading screen, or come from 

alternative sources. Clearly, ignoring the peculiarities of actual trading process may play a 

crucial role for the success or failure of model's predictive performance and for the relevance 

of simulated trading histories to real market data. However, at this point we accept the 

lack of realistic representation of some aspects of actual limit order trading as a price to 

pay for the relative simplicity, analytical tractability, and methodological generality of the 

competing risks specification developed in this chapter.
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4.2 Em pirical A nalysis o f  L iquidity and Order Flow in

th e  E lectronic Forex Lim it Order M arket

4.2.1 Statistical M ethodology

Since the key methodological ideas behind the competing risks specification have been de­

scribed a t length in Chapters 2 and 3. in this section we pay special attention to the details 

that are not discussed in the previous chapters. As usual in the competing risks framework, 

the choice of the Markov space depends on the range of prices, quantities, and other mar­

ket characteristics, whose effect on the point processes will be investigated. Even though 

the specification of the Markov space is ultimately determined by the objectives of study 

and often is severely restricted because of the data limitations, it is desirable in the loosely 

structured problems like this to start with as broad set of variables as could be reasonably 

possible. Among the dimensions of the Markov space should be the variables tha t might be 

linked to the market factors identified from theoretical considerations. Since the variables in 

the Markov space may be discrete or continuous, it may have sometimes a fairly complicated 

topological structure.8

The full covariate vector z selected for the analysis in this chapter is described in the 

next subsection (Table 4.2). Along with the “usual suspects” such as the bid-ask spread and 

the depth of limit order book on the bid and ask sides, components of the covariate vector z 

represent deeper dynamic characteristics of market liquidity, including several types of price 

and quantity changes, the side of the book where the recent transactions occur, and so on. 

No doubt, this set of covariate could be modified if the alternative data on traders’ identity 

or relevant information from other markets had been available.

8For instance, if the purpose of research is to study the effect of order clustering at the multiples of 

five ticks, the most natural specification of the study window would distinguish the range of prices such as 

multiples of 5 ticks, one plus multiples of 5 ticks, two plus multiples of 5 ticks, and so on, like it was done in 

Osier [111].
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The classification and identifying properties of event types will also be reviewed in 

the next subsection (Table 4.1). Each of the R  identified competing risks can be associated 

with occurrence of alternative limit order book events. The hazard rates of these risks are 

modelled using the Cox proportional hazard (CPH) specification

hr{t\z) = h0r(t) exp(z'/3,.), r = 1..... R. (4.1)

where h0r{t) =  hr(t\0) is the baseline hazard function, t is the time at risk, and z is the 

covariate vector. Covariates in proportional hazard models always act multiplicatively on 

the hazard rate of the specified type of event. The model (4.1) can be rewritten in the 

integrated form as follows

H r{t.\z) = I hr(u\z)du = I liQr(u)du exp(z'/3,.) =  HQr(t) exp(z'/3,.),
Jo Jo

where Hr(t\z) is the cumulative hazard function of risk r. The third equivalent representation 

of the model (4.1) is based on the expression for the survival function

S r(t\z) = exp(—ff,.(£|z)) =  exp(~ H 0r(t) exp(z'/3,.)) =  (50r(*))“ p(z'flr)J

where Sor(t) =  5,.(t|0) =  exp(—Hor(t)) is the baseline survivor function of risk v.

4.2.2 Description of Event Types and Covariates

The choice of the event types in the competing risks approach that has been briefly discussed 

in section 4.1 is somewhat arbitrary and depends on the questions to be answered, data 

limitations, and the prior theoretical considerations about the data generating process. The 

richness and limitations of our data allow specification of R  =  46 types of buyer- and seller- 

initiated events and selection of S  =  14 “observable” types of events that can be identified 

on the trading screens by all traders. Table 4.1 provides the summary of the sell side events 

introduced in this chapter. The rows of Table 4.1 describe 23 types of events triggered by 

sellers’ actions. The type of event is defined as a combination of order type (market or limit 

order), character of activity (submission or cancellation of limit order), and the distance
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between the price P* of the limit order and the prevailing best bid and ask quotes Jbid and 

■Pask prior to the event (column 2). The consequences for the best bid and ask prices and for 

the liquidity of the limit order book (market depth) at these prices are indicated in columns 

3 and 4 of Table 4.1. The events associated with arrivals of market and limit sell orders are 

denoted by letter “A” (which means the activity occurs on the ask side of the limit order 

book) followed by a numerical index corresponding to the sell order aggressiveness. Similarly, 

the cancellations of sell limit orders are denoted by “AC” followed by a numerical index tha t 

depends on the distance between the limit order price and the best market ask quote. The 

events marked in the first column of the table by single and double stars can be observed 

by all market participants. The events marked by double stars, which are also observable 

by all market participants, typically trigger immediate trade executions.0 The unmarked 

types of events are associated with limit order arrivals or cancellations a t suboptimal prices 

tha t cannot be observed on the D2000-2 trading screens and therefore constitute private 

information of traders.

The buy side events (which occur on the bid side of the book) are denoted by letters 

“B” and “BC” followed by numerical indices. The definitions of the buy side events are 

similar to the sell side events.

The events associated with changes of subsidiary quotes and the quantities available a t 

these quotes are not included into the public information domain, even though some of these 

events can be potentially observed by market participants. Therefore, we follow the general 

logic of the approach developed in Chapter 3 according to which the subsidiary events do 

not restart the “internal clock” of the “race” between competing risks and assume th a t all 

types of events except A1 through A6, AC6, B1 through B6, and BCG are unobservable.

The number and types of events are chosen to allow a fine partition across the types

of events to capture heterogeneity of traders’ behavior on the one hand, and to provide a

sufficient number of markers for flexible estimation of a sufficiently rich covariate structure

9Note that occasionally the trades will not be executed automatically following order crossings because 

of the lack of mutual credit among the counterparties, communication delays, etc.
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on the other hand. Given the data limitations, for each type r  of the competing risks 

the components of vector z„ (n — 1..... N r) are chosen to be associated with the market 

conditions at the time of event and the recent trading history prior to the event as shown in 

Table 4.2.

The components of the vector z„ of covariates (explanatory variables) incorporate the 

pieces of information on the screen (or information th a t can be easily inferred from the quotes 

011 the screen) tha t might be closely monitored by traders (c.f. Figure 2.1). In view of the 

analysis of the previous sections, the covariates include variables characterizing the recent 

quoted price dynamics, market liquidity, and the general level and momentum of market 

activity, including directional characteristics of recent transactions.10 The components of 

the vector z„ of covariates are divided into the three categories.

A. Price covariates

•  Slippage =  difference between the current midquote 4(PhirJ +  Pmk) and the last trans­

action price (measured in 0.0001 DEM);

•  Spread>Q =  quoted size of the bid-ask spread (measured in 0.0001 DEM) when it is 

positive, zero otherwise;

•  =  P vsi< — Pask,-i =  change of the best ask price (in 0.0001 DEM) between the last 

and second-to-last observable events;

•  Ap^k.-i =  Pask,-i — Pask,-2 =  change of the best ask price (in 0.0001 DEM) between the 

second-to-last and third-to-last observable events;

•  A Pbic| =  Pbic| — Pbjd.-i =  change of the best bid price (in 0.0001 DEM) between the last 

and second-to-last observable events;

10The determinants of limit order submission strategies are briefly discussed in O ’Hara [109] and Goodhart 

and O’Hara [52]. The main theoretical contributions on the topic are Chakravarty and Holden [20], and 

Parlour [112]. Biais et al. [12]. Handa and Schwartz [61], Harris and Hasbrouck [65], and Brown et al. [17] 

contain interesting empirical results.
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•  APhid,-i =  Pmi,-! — Pbid,-2 =  change of the best bid price (in 0.0001 DEM) between the 

second-to-last and third-to-last observable events.

The price covariates characterize the short-term dynamics of the best bid and ask 

quotes and their interactions with the most recent transaction prices. These covariates 

accommodate short-term deviations of the quoted bid and ask quotes from the long-run 

equilibria as well as the potential errors that could be committed in the reconstruction of 

the trading history. For instance, the Slippage variable defined as the shift in the market 

price given by the midpoint of bid-ask spread relative to the last transaction price may be 

interpreted as the midquote positioning bias. One can think of it as a profit accrued to the 

trader participating in the last transaction if she liquidates her last trade position a t the mid­

point of the current bid-ask spread.11 Since the absolute value of positioning bias is expected 

to be larger during the periods of changes in the bid and ask quotes without transaction 

activity, the Slippage variable can capture the tradeless price discovery mechanism tha t might 

prevail around the public news announcement. The size of the market bid-ask spread is often 

associated with the intuitive notion of illiquidity in the market microstructure literature, and 

is expected to have a strong impact on the types of submitted orders, as has been emphasized 

in the empirical microstructure literature.

B. D epth covariates

• log(Qask) =  natural logarithm of the market depth quoted on the ask side, i.e., the 

value of currency (expressed in $ mln.) available at the best ask price;12

11 This interpretation of positioning bias disregards the transaction cost, which is always incurred by 

aggressor (the counterparty initiating the trade) according to the trading protocol of the D2000-2 trading 

system.
12During the time period before 1998. the exact value of market depth on the ask and bid sides in the 

Reuters trading system was unobservable to market participants when it was in double digits (810 mln. or 

larger). Traders could see only the “R" indicator in the depth part of the screen. Therefore, we set Qask =  10 

and Qbid =  10 every time when the actual market depth is at least 10 million US dollars.
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• Qask =  indicator of large depth on the ask side, equals to unity if and only if the ask 

market depth is a t least $10 mln.;

•  A log(Qosk) =  log(Qask) — log(Qa.sk,-1) =  last change of logarithm of the market depth 

quoted 011 the ask side if the best ask price did not change between the last and 

second-to-last observable events, zero otherwise;

• A log(Qask.-i) — log(Qflsk,-i) — log(Q a s k . - 2 ) =  second-to-last change of logarithm of the 

market depth quoted 011 the ask side if the best ask price did not change between the 

last and third-to-last observable events, zero otherwise;

• log(Qbid) =  natural logarithm of the market depth quoted on the bid side, i.e., the 

value of currency (expressed in $ mln.) available at the best bid price;

• Qbid =  indicator of large depth on the bid side, equals to unity if and only if the bid 

market depth is a t least $10 mln.;

• Alog(Qbid) =  log(Qbid) — log(Qbid.-i) =  second-to-last change of logarithm of the 

market depth quoted on the bid side if the best bid price did not change between the 

last and third-to-last observable events, zero otherwise;

•  Alog(Qbid.-i) =  log(Qbid.-i) — log(Qbid,-2) =  second-to-last change of logarithm of the 

market depth quoted on the bid side if the best bid price did not change between the 

last and third-to-last observable events, zero otherwise.

The two market depth variables represent the second dimension of liquidity identified 

in the introduction to this chapter, specifically, how many units of asset can be bought (or 

sold) at the current ask (or bid) market prices. The depth covariates are also expected 

to be significant for the risks of cancellations since the likelihood of a  cancellation event is 

expected to be positively related to the total number of active limit orders, and the latter 

number is correlated with the quoted depth at the best market price. Similarly to the quoted 

prices, the changes of quoted quantities capture the more subtle traders’ reaction to changes
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in the publicly available information on the limit order book and private information from 

the customer orders. The indicators of large depth Q+k and Qbid accommodate potential 

nonlinearities in the dependence of market activity on the depth variables (which might be 

partially justified by unobservable exact levels of depth when the market depth exceeds $10 

mln.)13

C. Recent trade activity and order flow covariates

•  Side =  directional indicator of the last transaction (+1 for seller-initiated trades, — 1 

for buyer-initiated trades);

•  Side— i =  directional indicator of the second-to-last transaction (+1 for seller-initiated 

trades, —1 for buyer-initiated trades);

•  Fo_5" =  the signed order flow (measured as the difference between the number of seller- 

and buyer-initiated transactions) in the five-second period prior to the last observable 

event;

•  F5-10"; Fio_i5»; JFis-so", Fio-fio", F\—2'• and F5-15' are similarly defined as the 

signed order flow over the time periods five to ten seconds, ten to 15 seconds, and so 

on, prior to the last observable event;

•  To_5» =  the trade (measured as the total number of transactions) in the five-second 

period prior to the last observable event;

•  T5—io"- T\o—is"* Ti5_3o"> T30 go"t T\~o'. To—5' and 75_j5> are similarly defined as the

number of transactions in the electronic system in the periods five to ten seconds, ten 

to 15 seconds, and so on, prior to the last observable event.

Side, which is the indicator of aggressor in the most recent transaction, characterizes 

the asymmetry in the impact of completed transactions on the hazard rates as opposed to the

13 See the previous footnote.
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asymmetry in the impact of aggressive quotes captured by other variables, since the quotes 

that occur without transactions only indicate the intention to trade, not the actual trades. 

There is a strong evidence that the buy-sell indicator has a high predictive power for the 

direction of future transactions on the foreign exchange market (Goodhart et al. [54]) and 

on the stock markets (Hausman et al. [70], Lo et al. [89], Huang and Stoll [75]).

The additional activity and order flow covariates attem pt to capture some of the lower- 

frequency serial dependence in the market dynamics. Such variables should incorporate the 

influence of common factors contributing to the unobserved heterogeneity that cannot be 

captured by the current state of the limit order book. Since the failure to account for the 

unobserved common factors may invalidate the conditional independence assumption which 

is one of the foundations of the competing risks framework, the variables representing the 

trade and activity history are chosen to capture a substantial part of the  lower-frequency 

serial dependence, a t the same time striking a balance between the correct specification and 

empirical tractability of the model.14

4.2.3 Estim ation Results

Tables 4.3, 4.4, and 4.5 report the estimated coefficients of the Cox proportional hazard 

covariates for the competing risks of arrivals and cancellations of sell-side limit orders and 

for the sell market orders. Only events recorded during the first three days of the week, 

October 6-8, 1997, between 6 a.m. and 5 p.m. GMT, which are the most liquid trading 

hours in the Reuters D2000-2 trading system, have been used for the analysis.10 Significance 

of the covariate coefficients is determined from the robust f-statistics (Lin and Wei [87]) at 

the 99% level, and the statistically insignificant coefficients are shown in small script. The

14An alternative lagged activity measure given by the amplitude of transaction price fluctuations in a 

given time interval leads to qualitatively similar estimation results. Extension of the model to incorporate 

the dynamic error correction terms in the spirit of the ACD model (Engle and Russell [41]) is currently under 

investigation. Results of that study will be reported in a separate paper.

15The last two trading days of the sample me reserved for out-of-sample evaluation of the forecasts.
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qualitative effects of covariates for buy-side events are determined analogously. They closely 

mirror the covariate effects for sell-side events (Tables 4.6, 4.7, and 4.8).

The empirical regularities uncovered by the Cox proportional hazard regressions can be 

assigned to one of the three groups depending on whether they are associated with the shifts 

in price levels, changes in market depth, or changes in the signed order flow. Accordingly, 

they are reported in sections A, B, and C below. The location of coefficients in Tables 4.3-4.8 

providing evidence in support of these empirical facts is indicated in parentheses.

A. Empirical regularities associated with changes in the best bid and ask quotes 

and transaction prices

(Al) (The top three entries of column 2 in Ta,bles f .3  and 4-6.) The hazard rates of aggres­

sive limit order arrivals tend to be more sensitive to midquote shifts than the hazard 

rates of market order arrivals, even though the reaction of hazard rates is qualitatively 

similar for the market and aggressive limit orders. This is consistent with the theoret­

ical prediction of Foucault [45] and the empirical finding of Danfelsson and Payne [31]. 

In other words, the stronger upward price adjustment without trades implies smaller 

proportion of market orders in the seller-initiated flow of transactions and larger pro­

portion of market orders in the buyer-initiated flow of transactions.

(A2) (Column 2 in Tables 4-3 and 4-6.) Negative signs of Slippa,ge coefficients for the 

submission and cancellation rates of subsidiary sell limit orders and positive signs of 

Slippage coefficients for the submissions and cancellation rates of subsidiary buy limit 

orders support the view that the general level of subsidiary limit order submission 

and cancellation activity declines when the midpoint of bid-ask spread moves in the 

direction of the limit order price and away from the price of the previous transaction. 

The previously submitted orders are less likely to be cancelled, and the new orders are 

less likely to arrive when the market price moves closer to the given price level and the 

move is unaccompanied by transactions. However, the overall effect of the Slippage
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variable is less obvious when the last transaction leads to asymmetric changes in the 

best quoted prices and the depth at these prices. In this case, the interpretation be­

comes complicated because of migration of submission and cancellation events between 

alternative classes of risk every time the reference quotes (P!lak or Pbid) are modified.

(A3) (The top section of column 3 in Tables 4-3 and 4-6.) There is a strong negative 

association between the transaction intensity and bid-ask spread, a strong positive 

association between the rate of large price improvements and bid-ask spread, and a 

fairly strong negative association between the subsidiary order arrival activity and the 

size of the bid-ask spread.

(A4) (Column 3 in Tables 4-3 and 4-6.) Even though the fresh supply of liquidity (in the 

form of subsidiary limit order arrivals) and fresh demand for liquidity (in the form of 

aggressive limit and market order arrivals) are negatively related to the size of bid-ask 

spread, there is also negative association between the cancellation rates of previously 

submitted subsidiary limit orders and the size of bid-ask spread. The effect of spread 

on the supply of subsidiary liquidity is close to neutral. The only source of liquidity 

positively associated with the size of bid-ask spread are large price improvements tha t 

occur more often when the spread exceeds two ticks. Other than that, the liquidity 

supply appears to be fairly steady and driven primarily by short-term price fluctuations 

and trends and changes in the depth of the limit order book.

(A5) (The top three entries of column, 5 in Tables 4-3 and 4-6.) Sell market orders are dis­

couraged by bid price improvement; buy market orders are discouraged by ask price 

improvement. This “contrarian” property of market orders contrasts the properties of 

aggressive limit orders tha t appear to be more frequent following the price improve­

ments on the opposite side of the book. However one should be aware of the possibility 

of mechanical inisclassification of limit orders as being “aggressive” since a larger pro­

portion of sell limit orders submitted at the same prices overlap with higher bid quotes, 

and a larger proportion of buy limit orders overlap with lower ask quotes, even though
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the quote changes might be transitory price swings without any information content.

(A6) ( The top five entries o f column 4 in Tables 4-3 and, 4-6.) Arrivals of market sell orders 

and aggressive limit sell orders, as well as ask price improvements (but not the ask 

depth improvements) are more likely to  occur after recent ask quote deteriorations 

(increases). A similar regularity is observed on the buy side of the market with regard 

to recent bid quote deteriorations (decreases).

(A7) (The mid-section of columns 4 and 5 in Tables 4-3 and 4-6.) The arrival and cancella­

tion rates of subsidiary limit orders positioned several ticks above the current ask and 

several ticks below current bid market prices are negatively affected by recent deterio­

rations of best quoted prices on the same side and recent improvements of best quoted 

prices on the opposite side of the limit order book. A similar negative reaction to 

recent quoted price improvements on the opposite side of the book is observed for the 

arrival rates of price and quantity improving orders. In summary, price improvements 

on one side of the market are more likely to be followed by reduced liquidity provision 

on the other side of the market.

B. Empirical regularities associated w ith  depth of the lim it order book at the

best bid and ask quotes

(B l) ( The top six entries of column 6 in Tables 4-3 and 4■ 6.) The arrival rates for sell market 

orders and aggressive sell limit orders, as well as the rates of ask price and quantity 

improvements are higher when depth on the ask side of the limit order book is high. 

A similar effect is observed on the buy side of the limit order book. This points to the 

competition among aggressive limit order traders for time priority in trade execution 

as one of the driving forces behind the price improvement and transaction activities.

(B2) (The seventh and eighth entries of column 6 in Tables 4-3 and 4-6.) The arrival rates 

for subsidiary limit orders a t the price levels next to the best market bid and ask quotes
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are negatively affected by large depth at the best market quotes. This points to the 

competition among less aggressive limit order traders as the abundant liquidity on the 

market discourages limit order submission at inferior prices.

(B3) ( The third and seventh entries of column 7 in Tables 4-3 and 4-6-) Depth improvements 

at the best market quote become more likely after another depth improvement event 

at the same price market quote. This provides an evidence that liquidity tends to 

accumulate at the best market quotes once the market confirms these quotes as the 

new price levels. Depth improvements at the ask market price also encourage sell 

market order submission but do not affect the rates of ask price improvement. In fact, 

this mechanism is predominantly at work when the possibilities of price improvement 

have been already exhausted (and the market spread is one tick or smaller).16

(B4) (The top three entries of column 8 in Tables 4-3 and 4-6.) A tentative evidence that 

buy market orders arrive more actively during the periods of intermediate depth (less 

than $10 mln.) and less actively during the periods of large depth (at least $10 mln. or 

more) at the best ask price was not found for the arrivals of aggressive buy limit orders. 

Similar effects are observed for sell market orders and aggressive sell limit orders. On 

the other hand, the arrival intensity of very aggressive limit orders (submitted at the 

prices above the best ask and below the best bid quotes) appears to decline as the 

level of depth on the opposite side of the limit order book increases. This can be easily 

justified from the observation that very aggressive limit orders are more likely to be 

used during the periods of scarce liquidity (low depth) at the best market bid and ask 

quotes.

(B5) (Column 9 in Tables 4-3 and 4-6.) There is strong evidence that bid and ask depth

improvement events without price improvements encourage cancellations of subsidiary

limit orders on the opposite side of the book and discourage liquidity demand coming

16Additioruil Cox regressions for these events run separately for the periods of small and large spread

confirm this hypothesis.

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

in the form of aggressive limit and market orders from the opposite side of the market. 

Moreover, the deteriorating level of depth at the best market quotes encourages traders 

on the opposite side of the market to chase more aggressively the remaining liquidity 

at these quotes and avoid cancellations of subsidiary limit orders on the opposite side 

of the market.

(B6) (The bottom section o f column 9 in Tables 4-3 and 4-6.) The limit order cancellation 

rates at the best bid and ask prices tend to decrease after increases in the observed 

depth on the opposite side of the limit order book. The increasing depth encourages 

limit order traders on the opposite side of the book to keep his order at the best market 

price only if he knows that he will be the first trader to receive this price.1'

C. Empirical regularities associated with the lagged signed order flow and 

lagged transaction activity

(Cl) (The top section of columns 2~4 in Tables 4-4 and 4■ ?•) The arrival rates of sell market 

orders, aggressive sell limit orders, and market ask price improvements increase after 

seller-initiated transactions and decrease after buyer-initiated transactions. A similar 

effect is detected on the opposite side of the limit order book. This clustering of the 

buyer and seller pressure is consistent with the ample evidence of strong high-frequency 

directional momentum observed on foreign exchange and stock markets and reported 

in previous studies.18

(C2) (The bottom, section of columns 2-5  in Tables 4-4 and 4-r! )  There is evidence of higher 

cancellation rates for subsidiary sell limit orders up to ten seconds after seller-initiated

17This is confirmed by additional Cox regressions (not shown in Tables 4.3 and 4.6) run separately for 

cancellation events leading to price deterioration and leading to depth deterioration without change of the 

best quoted price.
18Lo et al. [89] report similar results for limit order data collected from stock markets. Hausman et al. 

[70] reports similar findings for transaction level data.
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transactions and lower cancellation rates for subsidiary sell limit orders up to ten 

seconds after buyer-initiated transactions. A similar effect is detected for subsidiary 

buy limit orders. This can be generally interpreted as an evidence of limit order book 

updating by order anticipators receiving signal that the trading pressure is shifting 

market price in the opposite direction.

(C3) ( The mid-section of columns 5-9 in Tables 4-4 an(l 4■ ?•) The prolonged periods of low 

submission rates for subsidiary ask limit orders are more likely to occur following the 

periods of massive seller-initiated transaction activity. However, only a weak evidence 

of similar effects is found for subsidiary bid limit orders. An explanation can be based 

on the common perception of the US dollar in the late 1990s as a currency with 

stronger fundamentals than the Deutsche Mark, which could be translated into the 

lower sensitivity of limit order bids to strong “Buy” signals. However, this apparent 

asymmetry may also be period-specific.

(C4) ( Tables 4-5 and 4-8.) The model provides ample empirical support for the observation 

tha t order submission and order cancellation rates increase after the periods of high 

transaction activity. The effect of transaction activity is very persistent at all price 

levels in the limit order book. Interestingly, the persistence of activity appears to 

be stronger for the arrival rates of subsidiary limit orders relative to other types of 

events. This also points to subsidiary limit orders and, more generally, to stop-loss 

order execution activity (Osier [110]) as a possible transmission mechanism of shocks 

and the source of memory and fat tails in the foreign exchange returns.
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4.3 D iscussion  and E xtensions o f  th e  M odel

4.3.1 Implications of Partial Observability o f the Limit Order Book

The users of Reuters D2000-2 instantaneously observe the best market bid and ask quotes 

and the market depth at these quotes,19 plus the information about direction and price of 

the most recent transaction. However, in reality the information tha t can be used by market 

participants to elicit the state of the limit order book and market conditions is obviously much 

larger, even if relevant information from other segments of the foreign exchange market and 

economic and political news announcements are ignored for the moment. W hat additional 

information on the state of the limit order book can be obtained from the Reuters D2000 

trading screens?

First, the users can switch a t any time between the modes of display showing the best 

prices and quantities in the entire system (in the “Market” mode), or only those available to 

the individual subscriber (in the “Trader” mode), or both (see Figure 2.1 and the explanation 

attached). For active traders, these two sets of quotes are closely related to  each other most 

of the time, even though they do not have to be identical. Recall tha t subscribers to Reuters 

D2000 must provide the list of potential counterparties (banks) that they are willing to deal 

with. Therefore, if a quote arrives from a bank that is not on this list, the dealer would be 

unable to trade at the quote observed on the “Market” part of display. Additionally, after 

noticing the discrepancy between quotes available on the “Trader” and “Market” parts of 

display, the subscriber might get additional information on the current and future market 

liquidity, even if he does not intend to trade immediately on either quote. The multilevel 

and potentially complex structure of the information available to traders suggests that at

19In October 1997, when the data set was collected, a Reuters D2000-2 trader could only observe the value 

of depth at the best bid and ask quotes only when it did not exceed nine million dollars. Whenever the 

depth was 10 million US dollars or more, the trader could see litera “R" in the corresponding entry without 

precise information about the value of foreign exchange available at the best price. The design of Reuters 

D2000-2 was modified slightly since then.
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least some of them might be better informed about the current elasticities of the market 

demand and supply curves around the best market bid and ask quotes simply because they 

voluntarily restrict the list of potential counterparties and as a consequence observe some 

subsidiary orders that remain hidden for the rest of the market.

Second, the dealers monitoring the market before a quote improvement event would 

normally know the quantity available at the previous best bid and ask quotes, at least for the 

first few seconds after change in the previous quoted price. The information inferred from the 

subsidiary quote quickly becomes obsolete if the best market quote does not bounce back, 

but sometimes it can be useful a t least for the first few seconds after quote improvement. A 

similar explanation can be offered to support the view that traders may know the market 

depth better than what is revealed by the large quantity indicator. Indeed, the traders who 

see only this indicator on the screen not only know for sure that the to tal quantity available 

at the current market price is at least ten million dollars, but also might be able to evaluate 

this quantity more precisely from the previous state of the market and additional information 

available on the “Trader” part of their displays.

These observations suggest an alternative specification of the Cox proportional hazards 

for competing risks with two additional covariates given by the proxies of instantaneous 

price elasticities for the market supply and demand curves. The precise definitions of these 

covariates are following:

•  =  log of the ratio of quantity available a t the second-best market ask quote to the

difference between the second-best and first-best market ask prices;

•  =  log of the ratio of quantity available a t the second-best market bid quote to the

difference between the first-best and second-best market bid prices.

A bit surprisingly, no qualitative conclusions made in subsection 4.3.2 about the impact 

of covariates on the hazard rates of alternative events are affected after the change of model 

specification incorporating the bid- and ask-side liquidity supply elasticities. Even though, 

occasionally, the effects of these elasticities are marginally significant, their informational role
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for the behavior of traders appears to be miniscule. For this reason, future specifications of 

the model will not include the elasticity covariates.

4.3.2 An Outline of the Actuarial Approach to Event History

Developing a unified approach to cancellation events remains a perennial challenge for econo­

metricians trying to model these events as part of a truly dynamic limit order market envi­

ronment. Cancellations of existing limit orders should be treated differently from the arrival 

events for several reasons.20 First, the concept of “epoch” as a time period between two 

events admits several alternative definitions, which are closely related to alternative defini­

tions of the clock time. In the stochastic process approach to event history, a new epoch is 

initiated every time the information on the trading screen is updated (i.e., after any event 

leading to change in the best bid or ask quote, or change in the depth a t the best bid or ask 

quote). For cancellation risks, there is an alternative view according to which epochs are 

associated with the lifetimes of limit orders. Thus, at any moment of time, the number of 

overlapping epochs equals the number of outstanding bid and ask limit orders.21 We call this 

treatment of event histories the actuarial approach, since there is a clear analogy between 

the risks of cancellation or execution for an outstanding limit order and the risks of contract 

termination or death for the beneficiary of life insurance policy. It is reasonable to assume 

that one of the determinants of cancellation risk for a given limit order might be closely 

related to its “age”, i.e., the time elapsed since the limit order was subm itted to the book. 

Additionally, the risks of events might depend on other factors tha t can be summarized 

as the “market conditions” in the limit order market case, the “environmental factors” in 

biometric and medical experiments, or the “operating environment” in engineering and relia­

20See also the discussion of the general philosophy of dynamic survival modeling in the expository paper 

by Singpurwalla [120].
21A version of the actuarial approach is implemented by Lo, MacKinlay. and Zhang [89], who use the tools 

of survival analysis to estimate the times to limit-order executions for a sample of 100 largest stocks in the 

S&P500.
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bility studies. In particular, market conditions include any information on prices, quantities, 

and recent transaction activity tha t is updated in real time on the trading screens. Addi­

tionally, the risks of execution and cancellation events are likely to depend on unobserved 

idiosyncratic components characterizing the traits of agents submitting the limit orders (such 

as their identities, preferences, sponsors, and trading strategies) as well as the public news 

announcements in the analyzed period.

As mentioned before, the practical implementation of a full-fledged actuarial approach 

in a dynamic limit order environment can be computationally prohibitive, especially when 

the depth of the limit order book is large. Since any market event leading to modification of 

observable covariates may also affect the hazard rates of competing risks for each outstanding 

limit order in diverse fashion, the most straightforward approach would be to  write the model 

tha t allows time-varying covariates, and estimate it for a large dynamic panel of buy and sell 

limit orders. As the computational burden associated with this approach for most practical 

situations can be extremely costly, several shortcuts to bypass the difficulties in estimation of 

the complete actuarial model are all based on the idea of dramatic reduction of the number 

of distinct time periods in the analysis.

One example of such a reduction is the proposal to replace time-varying covariates with 

their values at the moment of limit order submission, and hold them constant throughout the 

rest of the limit order history. Then the baseline hazard in the CPH model can be estimated 

as a function of time elapsed since the limit order submission. A version of this approach 

was implemented by Lo, MacKinlay, and Zhang [89] in their study of probabilities of limit 

order execution for a  number of stocks in TORQ database. Application of the method of Lo, 

MacKinlay, and Zhang [89] to our data set yields qualitatively similar results, providing some 

evidence of similarity in the performance of trading systems based on manual and automated 

limit order execution. However, since the thrust of our work is on the dynamic links between 

the continuously updated screen information and traders’ activity, rather than the static 

impact of fixed covariates, as if they are chosen in a  controlled laboratory environment, we 

do not emphasize these results. For the time being, the best approach appears to model the
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limit order book history in the old time scale, restarting the calendar clock every time the 

information on the screen is modified, and restrict the large number of limit orders subject 

to the cancellation risk to a relatively few types identified by the difference between the limit 

order and current market price. This is exactly what has been done in section 4.2 of the 

present chapter.

4.3.3 D iscrete Time VAR Approach to  the Joint D ynam ics of 

Price, Volume, and Market D epth

The vector autoregression is a popular econometric approach to high-frequency data based 

on the information aggregated a t discrete time intervals. However, it is well known that 

temporal aggregation can lead to inconsistent estimates of parameters, which is usually the 

case when a continuous time model is estimated on a sample of data collected in discrete 

time (Lo [88], A'ft-Sahalia and Mykland [5]). In this subsection we compare implications of 

our model with the estimates obtained by Danielsson and Payne [31] in the discrete-time 

VAR framework.

The raw data  set in this chapter is identical to the one used by Danielsson and Payne 

[31] in their study of the Reuters D2000-2 limit order book, even though the details of 

algorithms matching the limit and market orders might be slightly different. After pre­

processing the data set by a proprietary algorithm which is similar to the one described 

in section 2.1, Danielsson and Payne discretize the data  in physical time at the 20-second 

sampling frequency and estimate their model on this discretized dataset. In fact, Danielsson 

and Payne apply VAR to the new data set, which is comprised by snapshots of the limit order 

book and its summary liquidity characteristics recorded at fixed frequency. The discretization 

approach has many advantages, such as substantial data  compression and the possibility to 

apply a wide range of standard econometric techniques to the regularly spaced observations 

in the discretized time series. However, the discrete time approach may be of limited value 

when the main object of study is instantaneous reaction of multiple market participants to

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

the continuously updated screen information. The main reason that makes interpretation 

of discrete time model parameters problematic is the aliasing problem tha t was recognized 

in the engineering literature long time ago, and relatively recently drew the attention of 

econometricians who focused mostly on the estimation of continuous time diffusion processes 

from discrete sample observations (Phillips [114], Lo [88], Hansen and Sclieinkman [62], 

and [5]). Conceptual difficulties arise from the fact that the high-frequency dynamics of 

trading activity, which is the main research object in the empirical literature on market 

microstructure, are unidentifiable from the coefficients of discrete time VAR or any other 

time series model estimated in discrete time. As the reaction time of a typical trader to new 

information on the trading screens usually does not exceed one or two seconds, the frequency 

of 20 seconds used in Danielsson and Payne [31] appears inadequate for capturing almost 

instantaneous reaction of multiple traders to new information. Increasing the frequency of 

observations would be an obvious way to avoid this problem. However, reformulating of the 

VAR in discrete time a t higher frequency does not provide an easy solution as the higher- 

frequency sample becomes dominated by inactivity periods, ultimately leading to biases 

in the estimated coefficients. Explicit formulation and estimation of the empirical model of 

activity in continuous time appears to be the only reliable way to avoid the aliasing problem.

4.3.4 Summary o f R esults

The nature of competition among aggressive and non-aggressive traders can be summarized 

by the following digest of the main empirical implications of the continuous time model. 

Special attention is drawn to the role of price and depth improvements with and without 

trade for the price discovery process.

1. The continuous time model of this chapter implies tha t the buy market order activity 

is spurred by depth improvements due to higher competition of limit order traders 

for time priority on the bid side. However, the buy market order activity is deterred 

if depth improvements on the ask side are not accompanied by simultaneous price
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improvements (i.e., spread reductions).

2. The buy market order activity is encouraged by bid quote improvements originating 

from the competing limit order buyers, and by ask quote improvements originating 

from the providers of liquidity on the sell side of the market. However, the effect of a 

bid quote improvement on the buy market order activity is captured almost entirely 

by the concurrent reduction of the bid-ask spread, and appears to be much smaller in 

magnitude.

3. In the time period covered by our data, price improvements by competitors were gener­

ally considered good news, while depth improvements of competing limit order traders 

were generally treated as bad news tha t made market order traders to defer their 

transactions and consider taking different actions.

4. Overall, the prevalence of buyer-initiated trades among the recent transactions en­

couraged the buy market order activity and appeared to be good news for traders 

using such orders. Similar effects are observed on the opposite side of the market for 

seller-initiated trades.

4.4 Principal C om ponents o f  th e C om peting R isk  In­

dices

The main purpose of principal component analysis (PCA) in the present context is reduction 

of a large set of competing risk indices to a much smaller set of indices (factors) that still 

generate most of short-term market dynamics. Besides the data compression, PCA represents 

an important step toward automatic and efficient generation of short-term forecasts for 

the market activity. In retrospect, careful inspection of the market activity around the 

times of news arrivals reveals a typical market reaction pattern, which starts with a sudden 

and numerous withdrawals of orders on the “weaker” side of the market as it comes under
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pressure. The limit order withdrawals are accompanied by larger than usual values of bid- 

ask spread and strong directional trading volume driven primarily by market orders. This 

activity creates a considerable imbalance between the number of buy and sell orders in the 

limit order book, which is gradually restored after the price adjustment tha t occurs in a 

staggering wave-like fashion and is accompanied by higher than usual volatility of the price. 

No m atter whether the public news announcement confirms dealers’ expectations about 

Bundesbank cutting German interest rates, the severity of government crises in Italy, or 

the vulnerability of East Asian financial markets, as long as the pattern of traders’ reaction 

to such information releases has some common characteristics, it may be captured by a 

small number of factors that could potentially be much smaller than the number of market 

participants or the number of initially identified market components.

The version of PCA conducted in this section is based 011 the analysis of the sample

variance-covariance matrix E of competing risk indices Yr = Z'/3,., r  = 1 R. Matrix E is

formed by R, sample variances of risk indices

^ 7 -= - k ^ i V x r - y r ) 2- r = 1,2...., R.
n= 1

as well as R (R  — l) /2  sample covariances among the pairs of risk indices

N
^ r r '  =  ~N ^  - i-V n r  ( Jr )  (U n r ' U r ' ) :  b  I ~  1 ;  - •  ■ ■ • • Al ,  7 ^ 7 .

n = 1

and contains a large amount of information about the contemporaneous variations in the 

components of covariate vector Z characterizing the state of the limit order book. The data  

compression can be achieved since PCA approximates the parametric covariate-dependent 

competing risk indices Yr = Z'/3r by alternative risk indices Yr — U '7 r that depend on a 

limited set of common factors U  =  (u\, .... tig)'. These factors are formed as simple linear 

combinations of the covariates with the coefficients chosen in such a way that the first factor 

ti i explains the largest portion of the sample variance-covariance matrix22 of the competing

22Since the ultimate goal of analysis in this chapter is construction of short-term forecasts of trading 

activity, our main concern to the end of this chapter will he approximating the short-run variances and
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risk indices, the second factor u2 explains the next largest portion, and so on. The factors 

constructed in such a manner and normalized to have unit variance are called the principal 

components, or PCA risk factors. Then the factor loadings of these observable factors (which 

are, by construction, the linear combinations of covariates) can be obtained by application 

of standard regression techniques.

4.4.1 R elative Contribution o f PC A  Factors

Since, mathematically, the principal components are normalized eigenvectors of the variance- 

covariance matrix E, their number is equal to the number of competing risk indices R. As 

the last few eigenvectors of E point to the directions where the risk indices Yi, Yo, .... Yr 

jointly exhibit little or no variation, most of the information content of the data  is likely to 

be represented by some smaller number of PCA risk factors a \. . . . , u q ,  Q < R . In fact, the 

situation when Q <§; R, and the principal components u\ , . . . ,uq result in a much smaller 

data set, also cannot be ruled out.

The importance of PCA risk factors u j, u2, .... u . q  across the set of competing risk 

indices is measured by the eigenvalues Ai, A2 , ..., Aq of the extracted factors. In particular, 

the proportion of the to tal variance described by the first Q principal components is given 

by the ratio
E?=i V arK ) tr(V ar(U U ')) E ?=i Y,
Er=i Var(u,,.) tr(S ) E,.f=i K '

The natural question arises as to how many principal components should be retained to 

capture systematic variation in the original data set and avoid capturing what is likely to 

be a random noise. Since there is no single universally accepted statistical approach in the 

statistical literature to the number of PCA factors to be retained, it would be reasonable to 

take an eclectic approach applying a spectrum of alternative criteria to this problem,

covariances of the competing risk indices. Therefore, the analysis throughout, the rest of this chapter will be 

based primarily on the properties of short-run variances and covariances. It remains to lie seen whether the 

similar data compression performed at the lower frecpiencies leads to useful forecasts.
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Figure 4.10 represents the so-called scree plot showing the eigenvalues corresponding 

to the first 13 principal components against the number of those components. Inspection 

of the graph suggests tha t the first five PCA factors capture the major portion of variation 

in the risk indices, even though the sixth and seventh factors might also be marginally 

important. Table 4.13 shows that the first seven PCA factors capture almost 90% of variation 

in the indices, whereas the first five PCA factors capture almost 86% of the variation. The 

“subjective” choice of Q =  5 appears to be reasonable in the present context.

There is a large number of “objective” decision rules frequently applied to decide 

on the number of “significant” principal components to be retained. Jolliffe [78], Chapter 

6 gives a good survey of formal and informal approaches, while Jackson [76] investigates 

performance of alternative decision rules applied to some artificial and real data. Even 

though a large amount of research has been done on the rules for choosing the number of 

retained components, there is no universally accepted rule tha t is applied in the literature 

in all circumstances.

One of the popular statistical decision rules which is strongly favored in Jackson [76] 

can be derived from the so-called broken stick model (Frontier [47]). According to this model, 

if the total variance, represented by the sum of the eigenvalues of the variance-covariance 

matrix of indices, can be divided randomly among Q components, then the distribution of 

components follows a “broken-stick” distribution, with the expected A:th largest eigenvalue 

calculated as

* - h U  (4'2)

when the number of components Q  is large enough. One way of deciding whether the pro­

portion of variance accounted by the Arth PCA factor is sufficiently large for this component 

to be retained is to compare this proportion with AI given by (4.2). The test based on X*k 

leads to the conclusion tha t the first four components should be retained. However, since 

there are no systematic results on the size and power properties of the “broken stick” rule 

based on the expected eigenvalues, and in view of frequently cited evidence that the rule
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retains too few components, we check for the number of components using a bootstrap pro­

cedure tha t recovers the entire distribution of the A:th largest eigenvalue under the null of 

equal eigenvalues for the last Q — k +  1 PCA factors. This alternative procedure leads to 

the conclusion that Q = 5 components should be retained, with the fifth component being 

only marginally significant at the 95% confidence level.

Yet another, rather subjective procedure for selection of the number of retained com­

ponents uses the method of log-eigenvalue (LEV) diagrams (Wilks [126], Chapter 9). The 

method is motivated by the idea that, if the last R  — Q principal components pick up random 

noise, then the magnitudes of their eigenvalues decrease exponentially with the component 

number. The Q retained PCA factors correspond to the log-eigenvalues deviating from the 

straight-line portion of the plot on the LEV diagram. Figure 4.11 shows that the LEV plot 

deviates from the linear pattern implied by exponential decay of the plot under the null 

hypothesis of random noise for the number of factors as low as five. Even though it can­

not be unambiguously seen on the plot that Q = 5, it appears to be a reasonable choice 

again. Therefore, the further analysis will be conducted for five PCA factors. However, to 

ensure robustness of our results, we repeated the analyses for seven retained PCA factors 

and obtained similar results.

4.4.2 Interpretation of PCA Factors

Table 4.9 gives the representations of covariates in the original Cox proportional hazard 

regressions for the competing risks in terms of the extracted PCA factors. Tables 4.10, 

4.11, and 4.12 report the estimates 7 r of factor loadings on the first five PCA factors in the 

semiparametric Cox proportional hazard model for the competing risk indices Yr =  V ' j r 

of sell order arrivals, buy order arrivals, and cancellation activity in the limit order book, 

respectively. The estimation period is between 6 a.m. and 5 p.m. GMT on the week of 

October 6-8, 1997. The t-statistics for the estimates of Tables 4.10, 4.11, and 4.12 are shown 

in parentheses, and statistically significant factor loading estimates coefficients (at the 95%
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level) are marked by stars. To facilitate interpretation of the extracted PCA factors, we also 

show the diagonal and off-diagonal terms of cross-correlogram (Figures 4.13 and 4.12) for 

the first five PCA factors.

The first principal component, which is obviously nonstationary, dominates the dynam­

ics of risk indices. The first PCA factor captures approximately 44% of the total variation in 

the covariate indices of the competing risks. Since all types of risk have large positive factor 

loadings on the first factor, the first component can be readily interpreted as the general 

level of limit order book activity.

The second principal component contributes less than 16% to the total variation of risk 

indices dynamics. Inspection of its autocorrelogram reveals its stationarily, and its cross- 

correlogram with the first principal component shows that they interact only marginally 

a t all leads and lags. The factor loadings on the second factor are uniformly positive for 

log-hazard rates of buyer-initiated events (associated with submission and cancellation of 

bid limit orders and buy market orders) and almost uniformly negative for the log-hazards 

of seller-initiated events. Therefore, we can interpret the second factor as the short-term, 

activity mom,entum, which identifies the more active side of the limit order book (buy or sell) 

without differentiating across the types of activity (whether it is submission or cancellation 

of limit or market orders). Since the active order-driven market intrinsically represents the 

dynamic interaction of buyers and sellers, it should be no surprise tha t buyers’ or sellers’ 

actions cannot dominate the market for long periods of time. Indeed, the autocorrelation of 

this factor becomes indistinguishable from zero for lags as low as 50 time periods (epochs), 

where each epoch is assumed to be terminated by an observable limit order book event and 

lasts about one second on average during the hours of liquid trading.

The third principal component capturing 12.4% of variation in the hazard rate dynam­

ics has slowly decaying autocorrelogram and therefore has long memory. The rate of decay 

of its autocorrelogram on Figure 4.13, characterizing persistence of the third PCA factor, 

is close to the rate of decay of the autocorrelogram for the first factor. Similarly to the 

second principal component, the third PCA factor is uncorrelated to the first factor a t all
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leads and lags but interacts ratlier non-trivially with the second principal component. Since 

the factor loadings of the third component are negative for submissions of non-aggressive 

bids and aggressive seller-initiated orders, and positive for submissions of non-aggressive ask 

orders and aggressive buyer-initiated orders, we can think of the third factor as the “buying 

pressure” on the market. The cancellation activity pattern tha t can be uncovered from the 

factor loadings of cancellation risks generally countervails those for the second PCA factor 

(short-term activity momentum) and conforms to the intuitive notion of “buying pressure.” 

Aggressive buyers who tend to cancel buy limit orders several ticks below the market bid 

price, keep limit orders just below the market bid price in the hope of price reversal, and do 

just the opposite 011 the ask side of the market. Interestingly, since the cancellation activity 

patterns a t the best market bid and ask quotes are similar to the submission patterns at 

the more competitive prices (leading to price improvement and narrowing the spread), this 

also conforms to the activity of aggressive sellers who might be testing the market before 

resubmitting their orders if their earlier offers have not been hit promptly.

The analysis of cross-correlations between factors 2 and 3 is conducted using the aug­

mented graph of autocorrelogram highlighting the interaction between factors 2 and 3 (Figure 

4.14). T he graph shows tha t the unusually low activity on the ask-side of the limit order 

book relative to the bid side (small values of factor 2) precede the aggressive buyer pressure 

(high values of factor 3), leading to moderately higher ask-sicle activity in the short run that 

eventually reverts to persistently lower ask-side activity in the long run. This observation 

reveals the  non-trivial interaction between the two factors, which implies a richer story than 

most theoretical microstructure models can tell.

Since the interpretation of the consecutive principal components becomes increasingly 

difficult, we make an attem pt to interpret only the fourth and fifth components that con­

tribute, respectively, to 9% and 4.7% of variation in the parametric parts of the log-hazard 

rates of competing risks. The loadings on factor 4 appear symmetric for buyer- and seller- 

initiated events, and are positive for limit order submissions within the spread tha t do not 

cause immediate transactions, as well as for limit order at least five ticks away from the
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prevailing market bid-ask spread. The loadings on factor 4 are negative for the arrivals of 

market and limit orders causing transactions, as well as for submissions and cancellations 

of subsidiary orders in the vicinity of the market bid-ask spread. Therefore, high values of 

factor 4 can be associated with the tendency to quote more competitive prices within the 

spread, while high values of factor 4 are associated with the tendency to take limit orders on 

the opposite side of the book without much bargaining. Therefore, low values of factor 4 can 

be associated with “choppy” markets when trades tend to occur without much bargaining, 

which often happens a t the high levels of the market spread and might be associated with the 

relatively high adverse selection component (Harris [64]). We may attach the term “adverse 

selection” to the fourth PCA factor, and stick to the terminology in the future.

Note that the “adverse selection” factor does not appear to interact much with any of 

the other major principal components except the first one, which provides an illustration of 

the frequently reported phenomenon that the general level of trading activity is higher when 

some information is present in the market (i.e., the “adverse selection” component is high). 

Indeed, active markets lead to higher competition among traders who tend to submit more 

quotes before making a deal. The inverse causality also appears to be at work. Trading at 

the relatively large levels of bid-ask spread might be a signal of “choppy market,” a t least for 

some, presumably uninformed, traders, causing adjustments of their quotes until the market 

returns to the “smoother” state.

Finally, we make an attem pt to interpret the fifth PCA factor. The loadings on this 

factor are positive for all aggressive buy limit order arrivals and cancellations, for submissions 

of buy limit orders well below the bid market price, for submissions of sell limit orders just 

above the ask market price, and for all cancellations of subsidiary limit orders on the ask side. 

In all other cases, the loadings on factor 5 are negative and their signs and magnitudes are 

roughly symmetric to the signs and magnitudes of this factor loadings for similar risks on the 

opposite side of the book. Even though, in many respects, factor 5 behaves similarly to factor 

3, large values of factor 5 imply tha t the aggressive buyer activity tends to be accompanied 

by cancellations of subsidiary sell limit orders rather than arrivals of subsidiary sell limit
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orders, in contrast to factor 3. Also, factor 5 does not appear to be as persistent as factor 3 

(Figures 4.13 and 4.14), and generally is more sensitive to the changes of depth (Table 4.9). 

All these properties might be interpreted as a tentative evidence of directional information 

on the market tha t signals a permanent shift of the market price in the near future. For 

this reason we will call the fifth PCA factor the “bull market momentum!'’ throughout the 

rest of this chapter. In a small forecasting exercise of section 4.6 we pay closer attention to 

the second, third, and fifth principal components, that seem to be major determinants of 

directional activity in the limit order book.

4.5 S im ulation  E xperim ents

To validate the estimation results of section 4.2 and get a better idea about the strengths 

and limitations of the proposed competing risks model, we generate simulate the sequences 

of events originating from interactions of limit and market orders as described by the Cox 

proportional hazard specification of competing risks. The estimation period covers the active 

trading hours (between 6 a.m. and 5 p.m. GMT) of the first three days in the sample and 

includes almost 114000 observable and unobservable events.23 As a by-product of the simu­

lation experiment, we obtain long histories of bid-ask spreads, transaction prices, and other 

major characteristics of the trading process. Then the time-series properties of simulated 

prices, quantities, order flow, transaction price volatility, and their predictive ability with 

respect to each other can be compared to their analogues for actual trajectories.

In the second part of this section, we simulate the cumulative distribution functions 

for the time elapsed to specified event of interest, when the covariate vector and the initial 

state of the limit order book are specified in advance, and given the future transaction price 

at the moment when the event occurs. The non-trivial interaction patterns between alter­

native types of limit orders appear to be responsible for a variety the shapes of conditional

23The last; two trading days of the sample are reserved for out-of-sample evaluation of the forecasts in 

section 4.6.
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distributions given the future transaction prices. Even though the results of the simulated 

exercise in subsection 4.5.2 may be state specific, they point to the significant role of the 

limit order book for the price formation and future transaction activity, and indicate the 

importance of its continuous monitoring whenever the timing of trading decisions is a major 

concern.

4.5.1 Simulation of Quote and Transaction Histories

The simulation procedure generates the trajectories of transaction prices, signed directional 

flow of transactions, and the limit order book imbalance such as the ones shown in Figure 

4.15. The simulation experiment was conducted with the parameters of competing risks 

equal to the estimates reported in Tables 4.3-4.8. It was assumed tha t the initial bid and 

ask prices are P\m  = 1.7498 and PilSk =  1.7502 DEM per dollar, the quantities available 

at these prices are, respectively, Qbki =  $2 mln. and <2 ask =  $2 mln., and the last two 

recent transactions (both initiated by sellers of US dollars using market orders) were for $1 

mln. each and occured within the last two seconds a t the price P* =  1.7499. It was also 

assumed tha t no other limit order book activity has been reported after the two most recent 

transactions, no transactions occured prior to  the two most recent trades over the period of 

15 minutes, and the bid and ask sides of the limit order book consisted of eleven limit orders 

of size $2 mln. each evenly distributed in the interval [Pbid — 0.001; P^d] on the bid side and 

in the interval [Pask! Pisk +  0.001] on the ask side.24 All simulations were performed under 

the assumption that only incremental events25 are observable and change the state of the

24In all simulations vve assumed that the size distribution of all arriving and cancelled limit orders at any 

given price level is independent of the market conditions; in particular, the ratios of hazard rates for the 

limit orders of sizes Q  and Q' arriving at Pbid are constant and independent on other market conditions 

for all Q  and Q '. In view of the evidence of information content for very large limit orders in stock and 

currency markets, it remains to be seen whether and to what degree the assumption we make is justified by 

the empirical data.
25Incremental events me defined as the events occuring within the market bid-ask spread or at the bid 

and ask touch, and therefore associated with immediate changes of information on all Reuters screens.
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limit order book.

The visual similarities between the plots of Figure 4.15 and those shown 011 Figures 

1.1 and 1.7 in Chapter 1 are confirmed by the comparison of descriptive statistics for the 

trajectories of actual and simulated processes. The comovement of the graphs reflects strong 

positive dependence between the signed order flow and the transaction returns. Moreover, 

the signed order flow has memory and a reasonably good predictive power in comparison to 

the transaction returns, which appear virtually uncorrelated with the past order flow activity 

at time horizons larger than five seconds. In all simulation experiments, the artificial trading 

histories show persistence in the order flow time series and the ability of order flow to predict 

the aggressor and the very short-run dynamics of future transaction prices.

On the other hand, the order flow has virtually no explanatory power for the midpoint 

of future quoted bid-ask spread. Despite the strong evidence of directional momentum 

in the transaction activity driven by past order flow, there are significant negative low- 

order autocorrelations in the time series of returns. In fact, the evidence of large first- 

order negative autocorrelations in transaction returns is consistent with the results of earlier 

studies (see Hasbrouck and Ho [68], Goodhart et al. [54], among others).which reflect the 

widespread phenomenon in almost all tick-by-tick quote and transactions data that have 

been traditionally explained by the bid-ask bounce and asynchronous trading (see Chapter 

3 in Campbell, Lo, and MacKinlay [19]).

Several aspects of the simulated trajectories do not appear to be perfectly realistic 

and point to possible sources of model misspecification. First, the simulated time series 

of best bid and ask prices do not fluctuate as much as their empirical counterparts. This 

price inertia may be caused by the accumulation of limit orders at and near the best bid 

and ask prices where the cancellation rates are on average lower than the rates of new 

limit order arrivals. Such accumulation of limit orders gradually leads to the formation 

of barriers a t and near the best bid and ask quotes tha t turn out very difficult to break 

through. While formation of such barriers at certain levels is reminiscent of the clustering
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of stop-loss orders in the real markets studied by Osier [111],26 the model in the present 

form does not contain a well-articulated self-enforcing mechanism for the price to break 

through these barriers. As a result, the simulated prices tend to bounce between two clusters 

of limit orders much longer than the real prices in the market do. Even though various 

adjustments of the model are possible, and its deficiencies may be fixed 011 ad hoc basis, most 

of the attem pts to do this broke the subtle ecological balance between the order arrivals, 

cancellations, and transactions. We make a preliminary conclusion that the model in its 

present form is inapplicable as a realistic simulator of very long trading histories, if the 

goal is to simulate the price sequences that would reflect all im portant aspects of the real 

market prices. However, this does not preclude future applications of the model amendments 

as testbeds for newly launched electronic trading systems and for validation of new trading 

strategies, provided that there is a  continuous feedback to the simulator from the real market 

data.

Another source of model misspecification may provide an alternative explanation of the 

excessive price inertia observed in the artificial trajectories. Specifically, the present model 

specification ignores a large amount of information which is likely to be observable by most 

traders but is conspicuously absent from the set of covariates. Examples of critical pieces 

of such information include the messages from the Reuters electronic newsline, information 

from the forward market, information from other active currency markets, and, last but not 

least, the knowledge of depth of the limit order book a t second-best prices. The design of 

the Reuters D2000-2 trading system allows its subscribers to use the “Trader” section of the 

screen in addition to the “Market” section (see Figure 2.1) and thereby peek slightly deeper 

than  the very top of the book. Finally, traders may remember or a t least have a  limited 

knowledge of the limit order book depth at subsidiary price levels, while such information 

is not instantaneously available on the trading screens, since quotes a t the subsidiary price 

levels get concealed as a result of the recent price improvements.

26Some evidence of clustering of the limit order quotes and transaction prices can also be found in our 

data set.

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

The fact that the volatility of simulated trajectories tends to be smaller than the 

volatility of actual transaction prices over the time intervals of similar length poses another 

challenge to the present form of the model. By itself, this failure to fit the volatility pattern 

may be not so surprising as it can be a manifestation of the fact that the major portion of 

intraday price variability should be attributed to events outside of the Reuters D2000-2 limit 

order book. In other words, since trading in the analyzed segment of the foreign exchange 

market represents only a fraction of foreign exchange trading activity for the same period, 

the quote and transaction activity in the Reuters limit order book can hardly be responsible 

for a major portion of variability in foreign exchange rates that we typically observe in the 

real world. Therefore, the question about the ultimate cause of high intraday volatility in 

the foreign exchange market cannot be affirmatively answered without major modifications 

of the proposed framework. One obvious suggestion (that would be nevertheless difficult to 

implement in practice) includes collecting high-frequency data from all essential segments 

of the foreign exchange market over the same sample period, and expanding the model to 

accommodate the interaction of trading activity in the multiple segments of foreign exchange 

market.

4.5.2 Simulation of T im e to Event

Generating multiple scenarios of alternative events from the statistical distributions of com­

peting risks represents the first step in the development of dynamic strategies to exploit profit 

opportunities, or reduce the liquidation cost for open positions. As usual in the proposed 

competing risks environment, we assume tha t all market participants react to the conditions 

captured by the vector of covariates, and the intensity of their reaction can be represented by 

a system of hazard functions of these covariates. In the order-driven financial market viewed 

as an arena of competition among multiple agents for time priority, the non-homogeneous 

reaction of multiple traders to sequences of buyer- or seller-initiated transactions (market 

momentum) might be a potential source of profit opportunities or reductions in liquidation
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costs when the existing open positions are closed.

Figure 4.16 shows the simulated plots of cumulative distribution functions for the time 

to the next seller-initiated transaction, conditional on the price level of this first transaction. 

Apparently, all simulations are performed under the initial conditions, given by the sta te  of 

the limit order book and the recent history. In this experiment we assume tha t the initial 

bid and ask prices are Pbid =  1-7498 and P;usk = 1.7502 DEM per US dollar, the quantities 

available at these prices are, respectively, Qbui =  $2 mln. and =  $2 mln., and the last 

two recent transactions (both initiated by a seller of US dollars using market orders) were for 

$1 mln. each and occured within the last two seconds a t the price P* =  1.7499 DEM per US 

dollar. It is also assumed that no other limit order book activity has been observed between 

the time of the hist transaction and the present (i.e., the current epoch was triggered one 

second ago by a seller-initiated transaction), tha t no trade occured at least for 15 minutes 

prior to  the previous two transactions, and that the bid and ask sides of the limit order book 

consist of eleven limit orders of size $2 mln. each tha t are evenly spread within one tick 

of each other in the intervals [Pbid — 0.001; Pbid] and [Pa.sk; Pask + 0.001], respectively. The 

experiment is performed 500 times using the competing risks calibrated by the param eter 

estimates obtained in section 4.2.

Provided that the initial state described above corresponds to the actual market condi­

tions, the results may be interesting for market order traders and their sponsors contemplat­

ing the effect of their trades on the future evolution of the market. For instance, consider a 

trader who needs to close his short US dollar position th a t has been originated by two $1 mln. 

transactions at the price P* =  1.7499 DEM per US dollar. He might consider placing a  bid 

limit order and would like to evaluate the probability th a t the market could be driven down 

temporarily far enough to make a purchase of US dollars at bid price a  bargain. However, 

even though the short-term directional momentum set off by the two recent seller-initiated 

trades moves down the market bid price (at least temporarily), it is highly unlikely th a t it 

would be strong enough to carry the ask price below the price of the most recent transaction. 

In the experiment of Figure 4.16, the first seller-initiated transaction occured at the price
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below P* = 1.7499 DEM in 315 out of 500 cases (63%), showing tha t the simple strategy 

of selling aggressively and trying to “catch the wave” with a buy limit order submitted at 

the price below P* =  1.7499 DEM might pay off, at least under the specified market con­

ditions. However, this strategy can be risky since (a) the market conditions (in particular, 

the state of the limit order book) are usually unknown, (b) even when the market conditions 

are known, the bid limit order may never get hit, and the market price actually can go up 

and not return to P* =  1.7499 DEM in the foreseeable future. A simple way to reduce the 

non-execution risk associated with open limit order positions would be to buy using a market 

order once the ask market price goes down below P* =  1.7499 DEM. However, this event 

does not happen frequently enough in our simulation experiments to justify this strategy.2' 

Taking into account the $25 transaction fee (paid in this market by aggressors), the attem pt 

of creating profitable momentum is likely to be self-defeating, a t least in a relatively quiet 

market environment such as the one described above, as it leaves the trader with an open 

position that he would be forced to carry over or close with a loss.

4.6 Order Flow  Forecasts B ased  on  th e Lim it Order 

B ook  Inform ation

The market efficiency has been an issue of primary concern for both academics and practi­

tioners since the seminal work of Bachelier [9]. In its most popular form, the efficient market 

hypothesis is a statement tha t prices in financial markets fully and correctly reflects all pub­

lic information. As a consequence, the price changes in an informationally efficient market 

can only occur in response to the new information, and therefore they are unpredictable. 

The early academic studies summarized by Fama [44] found some evidence in support of 

the view that m ajor financial market are very efficient. At the same time, since Cowles [25]

27The market ask price went clown to Pask =  1.7498 or below prior to the first seller-initiated transaction 

only in 24 cases out of 500. It is unlikely that it would happen more frequently if the trader waits longer.
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and Niederhoffer and Osborne [105], there was a substantial body of literature questioning 

the view of market efficiency 011 both empirical and theoretical grounds. It was also demon­

strated  that the predictability of financial returns and other quantities is related but not 

synonymous to the market inefficiency. Specifically, the predictability does not necessarily 

imply market inefficiency in the sense that there exist viable dynamic strategies making 

positive riskless returns.28

The growing consensus in the economics profession is that it is possible, though ex­

tremely difficult, to predict the changes in prices of financial assets. Given the ample evi­

dence about dependence between the order flow and the dynamics of returns in the foreign 

exchange positions, the natural question is whether the magnitude of this effect is high 

enough to generate reliable short-term forecasts. Even though structural and time series 

models of foreign exchange traditionally faced considerable difficulties generating reliable 

forecasts of exchange rates (Meese and RogofF [101]), more recent studies suggest a greater 

degree of success in generating intraday forecasts at intradaily frequencies. For example, 

Zhou [128] pre-processes the tick-by-tick DEM/USD data using a “de-volatilization” algo­

rithm  to construct the trading signals based on the direction of “abnormal” (larger than two 

standard deviations) “de-volatilized” returns. Evans and Lyons [43] present an econometric 

model of joint price and order flow determination and show that application of this model 

to daily foreign-exchange returns produces good out-of-sample forecasts at short horizons. 

A part from the substantial anecdotal evidence of profitability of technical analysis, the recent 

systematic surveys of practitioners in the interbank foreign exchange market (Cheung and 

Chinn [21], Cheung and Wong [22]) provide a support for the view tha t the foreign exchange 

market may be forecastable in the very short run. As a consequence, the signed order flow 

is a viable indicator of traders’ willingness to back their beliefs with real money, and should 

be taken seriously as a signal of future direction of exchange rate movements.

280 n  the other hand, the market timing and design of efficient trading strategies is an issue of practical 

importance in both efficient and inefficient markets, since traders often have the commitments to liquidate 

then- positions and would like to do it at a minimum loss.
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The issue of predictability of financial markets lias always been especially relevant 

for foreign exchange dealerships and portfolio managers who spend their time in constant 

pursuit of elusive profit and earn substantial fees executing orders of their clients. In view 

of the recent interest of practitioners to developing dynamic trading rules and active asset 

management strategies, evaluation of forecasting accuracy becomes one of the critical issues 

of modern research. For example, Levicli and Thomas [86] demonstrated the statistical sig­

nificance of some technical trading rules against conventional param etric models of exchange 

rate determination. More recently, Lo, Mamaysky, and Wang [90] applied kernel nonpara- 

metric regression techniques to technical pattern recognition and found that several technical 

indicators provide incremental information of practical importance for stock market valua­

tion. In application to high-frequency foreign exchange data, Dacorogna et al. [29] examines 

real-time trading models under heterogeneous trading strategies and makes the conclusion 

that the identification of the heterogeneous market microstructure in their models leads to 

excess risk-adjusted return.29

In this section, we give the forecasting formulas for the probabilities of next limit order 

book events. Then we briefly discuss alternative measures of forecasting performance (in­

cluding the monetary measures based on expenditure analysis) drawn predominantly from 

meteorology and quality control literature. The selected graphical tools for forecast evalu­

ation will be applied to measure the goodness-of-fit of the five-factor principal component 

competing risks model (section 4.4) calibrated to the data collected over the liquid trading 

period (6 a.m. to 5 p.m. GMT) on October 6-8, 1997, and evaluate the out-of-sample 

predictive performance of this model in the liquid trading period on October 9-10, 1997. 

This exercise is especially interesting since our out-of-sample period is dominated by highly 

volatile trading following the Bundesbank announcement about an increase in the repo rate 

around 11:30 a.m. GMT on Thursday, October 9, 1997. The volatility and spread over a

large portion of the out-of-sample period remained much higher than they were during the

29Chapters 9 and 11 of Dacorogna et al. [30] give a summary of the framework for evaluation of real time 

forecasting performance of trading models and their applications to foreign exchange markets.
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period October 6-8, 1997. The ability of the competing risks model calibrated on historical 

data to generate credible out-of-sample probability forecasts will be a clear indicator of its 

promise in improvement of short-term probability forecasts of market events and in their 

applications to the analysis of alternative scenarios in real time.

4.6.1 Forecasting the Probability of N ext Event

Our probability forecasts will be based on the expressions (3.10) and (3.11) with the version 

of kernel estimator of the baseline hazard function used in section 3.5. Throughout this 

subsection we also maintain the regularity assumption

r
lim /  /to,.((/,)du =  oo. for some r =  1 .2..... R, (4.3)

r — boo J
0

which guarantees that the probability of no event in interval [0; r] converges to zero as the 

period without arrivals of new observations expands. Then to seconds after the arrival of a 

new observable event the updated risk index Y„r =  z(,/3,. for the risk of type r feeds into the 

expression of the hazard rate to yield

H r(t,Ynr) = H0l.(t)exp(Ynr)

and into expression (3.10) for the incidence rate to obtain the conditional probability tha t 

event of type r  will be next to occur less than t seconds after the previous observable event 

provided tha t the observation period has started to seconds after the previous observable
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event30

where

I
P,.(t0. t; Yn.) = I  P0(t0, a: Y„.) exp(Ynr)dH0r{u), r = 1,.... R.

to

P0(t0,t;Y„.) = n  ( l - ^ e x p ( K „ r)d/i/or(u))
«€[/o;/) V r = l  /

(4.4)

=  exp -  £ ( t f 0r(*) -  H0r(t0)) exp(Ynr)
r=  1

is the conditional probability that no event occurs over the period [to! 0  after the previous 

observable event given tha t no event has occurecl over the period [0; t0) following the previous 

observable event. The conditional probabilities (4.4) are estimated by the incidence rates 

(3.10), using the formula

Pr(to,t;Y„.) =  / ' P0(ta,u;Yn.)exp(Yr,r) d H o r (u X r ) ,  r  =  L ...,i2 , (4.5)
t.0

where

Po{to,t;Y„.)  =  exp -  £ ( t f 0r ( t  Y„r) ~  H 0r(t0, Ynr)) exp(Ynr)
r=  1

Hori'-Ynr) are obtained by integration of one of the kernel hazard rate estimators (3.13), 

(3.14), (3.18), (3.22), or (3.23), discussed in section 3.3, and Yn. =  (V),r)^=1 is the estimated 

vector of risk indices. In particular, if only the subset of observable types of events r =  1,..., 5  

{S < R) and the epochs terminated less than r  seconds (0 < r  <  oo) after the last observable 

30A more parsimonious alternative characterization of the risk indices could be obtained in terms of the 

PCA factors U„ =  (t/.i, 1/.2 , .... u q )' (Section 4.4). since

Y i ir ~  U „ 7 , .  4“ Vttr —  V),,* 4" V/(r, ’/  =  1 , ..., 12.

In this case the set of baseline cumulative hazard functions Hq, (u) need to be recalculated to incorporate 

the portion v,„. of the covariate index Ynr =  Ynr 4- vnr assigned to the noise component. The conditional 

probability formulas look similar, except that the indices Y„r and baseline hazard functions Hq,.('u) are 

captured by the more parsimonious factor structure.
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event are considered in the analysis (see section 3.2), then the probability evaluated t0 < r  

seconds after the last event that the given epoch will be terminated with an event of an 

observable type r  =  1,.... S  is given by the ratio

_ /j.  \r \ Pri^Qi 7")  ̂/»•) I a R\
Y u P P P Y ) '  (4 6 )

Finally, after substitution of the expression for the incidence rates Ps(t0,u ;Y n.) into the 

integral (4.4) and some manipulations, we obtain

S'
Pr(t0.T ;Y n.) =  I exp

Jto
Y«r -  ^ > x p (y ;,,)F /0s(«)

•s= l
dHor(u)

f T e x p  I',,,. Ih0r ( U )  ,  TT,  v  n  ] TT,  v  ,

“  L  £ i ,e x p ( y ;„ ) A 0. ( t i ) exp “ ’ "

./w(/.o.v„.) V 6 , eXDfK.I/ln.ffll

= L

lH(i.0,y„.) E^=i exp(y,,s)/?o,(0)
'CXP(-W«0 .V„.)) exp(Y„r)//0r(-log (v ))

where

e x p ( - / / ( r . v „ . ) )  £*=1 exp(Y,,.,)/% (- log(y))

s
H {u ,Y n.) =  ^ e x p (Y „ ,) f /0.,(-u)

,s= l

is the cumulative hazard function for the termination risk (triggered by an arrival of any

observable event s =  and hor{') =  r(H ~l (-,Y„.)) is the baseline hazard rate of

risk r for all r =  1,..., S, expressed in the units of “intrinsic time” H(-, Y„.). Provided that

the last integral in (4.7) is well approximated by the logistic functional form

^ r(t0,r)exp(Y „r)
£ * = 1  As(^0 ; r) exp(Y„.,) ’

then the odds ratio (4.6) takes the form of conventional logistic function (adjusted for the

passage of time) and forecasts can be based on the conventional multinomial logit estimates.

On the other hand, if the main interest is to obtain the forecasts of instantaneous relative

risks exactly tn seconds after the last observable event, one should directly substitute the

covariate and baseline hazard estimates into the ratio

har(t0)exp(Ynr)

ZfLi h0s{to) exp(Y,.,)
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More generally, the probability forecasts can be based 011 the sample analogues

T

Pr{t0,T;Y„.) = I  ho,-(u) exp(K„, -  H{u. Y„.))du. r = l , . . . . S , (4.8)

(4.9)

for the expression (4.7) and formula (4.6).

The probability estimates (4.8) and (4.9) form the backbone of our forecasting results. 

When the probabilities are evaluated immediately after the moment when the limit order 

book gets updated, we can set to =  0 in the formulas (4.8) and (4.9). The forecasts con­

structed by these formulas are dynamic in the sense that they take into account the passage 

of time as the internal ( “epoch” ) time t0 increases from zero until the moment of epoch 

termination.

4.6.2 Evaluating the Performance o f Probability Forecasting M od-

The predictive performance of any forecasting model is judged on its ability to  assign to the 

forecast event a meaningful probability as a function of the observed covariates z. Consider 

event A, which occurs in population with probability P(A\z),  conditioned on the vector 

of observable market characteristics z. Let On = 1{A}, which is one or zero if A  actually 

occurs or does not occur in observation n. W hen the outcome O of event is dichotomous, and 

the occurence or non-occurence of event can always be verified, the most popular measure 

used to assess the probability assignment P(A;z)  provided by a forecasting model is the 

mean probability score (Brier [16]) based on the population least-squares differences between 

forecast probabilities and the subsequent binary outcomes,

els

Scove{P{A)) = E [(0  -  P ( A ; z ))2] =  E[E[(0  -  P(A\  z))2|z]]. (4.10)
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The mean probability score can be estimated by its empirical analogue

■ i - E t O . - P M ;  z,,))2. (4.11)
1 1 = 1

called the Brier score, and denoted BS(P(A)).  The Brier score is close to zero if the prob­

ability estimates provide near-perfect forecasts, and close to unity if the forecasts almost 

always miss the correct outcomes. While attractive from a practical standpoint, any scalar 

measure such as (4.11) is necessarily incomplete and gives only limited characterization of 

the forecasting performance. Despite other obvious drawbacks of the Brier score, such its 

failure to attach an explicit monetary performance measure to actions that could be taken 

by the decision maker in conjunction with the forecast probabilities, the Brier score and its 

modifications are used in the quality control and forecasting literature nearly universally.

Murphy [104] derived an instructive algebraic decomposition of (4.11), which is em­

phasizes the contributions of different aspects of the Brier score to prediction quality (see 

also Yates [127]). The Murphy decomposition is written for the binned data, calculated after 

assigning to J  bins the observations of N  outcomes 0 \ ,  Oo, .... sorted in the increasing 

order of their forecast probabilities P {A ;Zi), P(A;zo), .... P {A ;zat). Let P j  be the average 

probability forecast for observations in the j t h  bin (j  =  1.2,..., J ) , Oj be the average condi­

tional outcome for the subsample of outcomes On assigned to the j th  bin, and j(n )  be the 

index of the bin corresponding to observation n. Then the discretized (or Sanders modified) 

Brier score

b s j (P (a )) =  ± £ ( o „ - 7 !jM )*,
iV H = 1

can be decomposed as follows

B S j ( P M ) )  =  1 E ( ° . - 7 J W ) ' 4 E ( ( 0 . - O i ) - P j l . | - O i ) ) !
JV 11=1 n-1

=  + (4.12)

. /  . /

=  Uncertainty — ^  Resolution,- +  ^  Reliability,- 
j = i  ' j = i

=  Uncertainty — Resolution +  Reliability.
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The first term in the decomposition (4.12), over which the forecaster has no control, 

represents the sample variance of binary outcomes. It gives the lower bound of the Brier 

score that can be achieved for the given sample of observations, which is obviously a number 

between zero and 0.25. The uncertainty term is close to zero only when the event in the 

sample either almost always occurs or does not occur.

The resolution term in (4.12) shows how well the group partition based on the as­

signment of forecast probabilities is able to discriminate between zero and unity. This term 

depends on the forecast probabilities through the sorting of the events making up the bin 

partition of the sample. If the binned observations have substantially different relative fre­

quencies than the overall sample, the resolution term is large, which is desirable, since it 

leads to  reduction of the overall score.

Finally, the reliability term in (4.12) describes the ability of the forecasts to calibrate, 

i.e., assign meaningful probabilities to outcomes in the sample. The reliability term is repre­

sented by the weighted average of the squared differences between the forecast probabilities 

and the relative frequencies of the forecast event in each bin. For very reliable forecasts, 

the relative frequency corresponding to the j th  bin is very close to the forecast probability 

corresponding to the same bin.

When assessing the quality of a forecasting system, it is desirable to compare it with 

the performance of a “fence-sitter” , i.e., a forecaster always presenting the sample probability 

of event A  as the forecast probability. For such a  forecaster, both resolution and calibration 

terms are zero, and the Brier score is 0 (1  — O). The Brier relative quality score (also called 

the skill score) of a given forecast measures its performance relative to the “fence-sitter” and 

is defined as

SS (P(A))  =  1 -  (4.13)

The quality score can be decomposed into the quality scores measuring separately the reso-
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lution and calibration ability of the forecaster relative to the “fence-sitter” as follows

BS(P(A))  Uncertainty — Resolution— Reliability
SS{P(A)) = = l

_  Resolution -  Reliability _  E'/=i(Resolution,- ~  Reliability,) 
Uncertainty Uncertainty

A subsample of probability forecasts corresponding to the j th  bin exhibits positive skill in the

sense of equation (4.13) if its resolution term is larger in absolute value than the reliability

term.

The Murphy decomposition shows tha t both discrimination and calibration are impor­

tant in the evaluation of forecasting performance. When we collect a new sample of covariate 

vectors zjv+i. z,v+2 , •••, z,v+a/- for which we assess the probabilities of event A  using the fore­

casting model P( A: z). If the model is well calibrated, which is indicated by a high reliability 

score, then for all values of p between zero and one it should be true tha t among the ob­

servations for which the model assigns the probabilities close to p. event A  will be actually 

observed in 100p% of cases. On the other hand, the quality of discrimination measured by 

the resolution term characterizes the ability of the model to discriminate between different 

probability regimes. The “sharpness” , or resolution of the model depends on the grouping 

procedure implied by the rule that assigns observations to the bins.

The Wilks reliability diagram (Wilks [126]) provides a convenient way to visualize 

the Murphy decomposition. It plots the cumulative frequencies of the binned observations 

against the forecast probabilities associated with these bins. Since for a very reliable forecast 

fa Oj.  the contribution of the reliability component is close to zero, then the plot on 

the Wilks diagram is close to the 45-degree line. The resolution term measures the mean 

square distance of the reliability plot to the sample frequency of the event O. A forecast has 

high resolution when the dispersion of the grouped frequencies Oj around O is as large as 

possible. Conversely, a forecast has no resolution when the event occurs with the frequencies 

Oj fa O for all bins j  =  1 ,2 ,.... .7.

The Wilks reliability diagram is also useful for detection of biased and overconfident 

forecasting rules. In particular, if the reliability plot lies below the 45-degree line, the
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predicted probability of the event is higher than  the actual frequency, and the forecast is 

upward biased. Conversely, if the reliability plot lies above the 45-degree line, the predicted 

probability of the event is lower than the actual frequency, and forecast is downward biased. 

Overconfidence is detected when the reliability plot is located above the 45-degree line in 

the range of low forecast probabilities (indicating that the event occurs more frequently 

than predicted when the forecaster thought it was unlikely) and located below the 45-degree 

line in the range of high forecast probabilities (indicating that the event did not occur as 

frequently as predicted when the forecaster was almost sure about the event). Similarly, one 

can detect biased forecasters, who tend to report overly conservative forecasts most of the 

time.

4.6.3 Evaluation of Forecasts by the M ethod o f Relative Cost 

Analysis

The Brier score and Wilks reliability diagram are powerful tools for evaluating and comparing 

the performance of alternative probability forecasts. However, the Brier score does not give 

an answer the question of whether the desired quality of forecast has been achieved by the 

given forecasting model P{A; z). A useful diagnostic tha t can be aligned more closely with 

the value of forecast for a potential user is the skill score, which was introduced originally in 

the signal detection theory and now widely used in meteorology and decision sciences.

First, consider the case of a deterministic forecast. Over a large sample of observations, 

we can form the contingency table associated with a given forecasting model

Forecast A Forecast A

A  occurs 7Too =  Pr{A k  Forecast A} 7Toi =  Pr{A k  Forecast A}

A  occurs 7Tio =  Pr{A k  Forecast A} 7T|i =  Pr{A k  Forecast A}

Based on these values, the hit rate H  and the false alarm rate F  are defined as

H  = — ZU—  and F  = .
7T10 +  TTll fiOO +  floi
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Similarly, the hit and false alarm rates for probability forecast P (A \z)  are defined as follows. 

Assume tha t event A  occurs if the probability forecast P ( A \z) is greater or equal than some 

threshold i t*  . and will not occur otherwise. Define the h i t  r a t e  for a family of probability 

forecasts associated with alternative levels of threshold probability 7r* € (0; 1) as

H ( t t * )  =  =  X 1  £  Onl { P ( A ; z n) >  7T*}.

The false alarm, rate for the family of probability forecasts is defined similarly as

F(* ')  =  y A j j  x  j f  D 1 -  >  IT * } .

The relative operating characteristic curve (ROC; Swets [124]) is defined as a plot of H(n*) 

against F(~*) for tt* €  (0; 1). The forecaster’s skill may be measured by the area under the 

ROC curve. A perfect forecast has this area equal to unity, while the area equals 0.5 for 

a statistical forecaster with the hit and false alarm rates proportional, respectively, to the 

frequencies of occurence and non-occurence of event A  in the sample. The forecast is more 

valuable for the ROC curves tha t are more concave and bent to the upper-left corner of the 

diagram.

To show how the monetary measures can be assigned and used to evaluate the quality of 

forecasts, consider a risk-neutral decision maker (trader or, more generally, another potential 

user of forecasts) who takes some specific action depending on the likelihood assigned to event 

A  by the forecasting model.31 Assume the expenses associated with each combination of the 

trader’s action/inaction and event occurence/non-occurence are given by the contingency 

table _________________________________________
Don’t take action Take action

A  occurs Coo =  0 coi =  C

A  occurs cio =  L cn =  C

31 The risk-neutrality assumption is not important in the present context, if the traders objective func­

tion can be modified appropriately to incorporate the measures of risk based on the higher-order moments 

(variance, skewness, etc.) However, our analysis does not extend to the case when the risk experienced by 

the trader cannot be expressed in terms on finite-order moments.
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Assume tha t the decision maker would like to minimize his or her overall expected expenses.

If only the sample frequency O of event A  is known, and the probability forecast is 

unavailable, the decision maker can choose only among two types of decision, either always 

or never take action. The expected expenses in both cases are, respectively,

jFfCost | Take action] =  C, and

ii[Cost | Don’t take action] =  LO.

Therefore, the expected expense of the decision maker per unit of potential losses that could

be experienced when no action is taken is expressed as follows

j£[Cost] 7ri0T +  (7Tqi +  7Tn)C C t ^
M  =  — —    -------------------2-------------------- =  7Tio +  - ^ ( 7 r o i + 7 r n )

=  { 1 - H ) 0  + F - y ^ ~ 0 )  + H - y 0.
J j  L i

For a perfect deterministic forecast, H  =  1 and F  =  0, so that A /perrect =  j;0 .  On the other 

hand, if the decision maker knows only the sample probability O of the event occurence, and 

nothing else, then M  will be minimized if action is taken whenever C/L < O. Therefore, 

given only the statistical knowledge of probability distribution, the expected expense is 

Mstat =  m i l l  ( 7S O ) .

Define the information value V  of forecast as the reduction in the expected expense per 

unit loss M  relative to M sta t ,  normalized by the maximum possible reduction A /Stat — M perfect 

associated with the perfect forecast,

y  — -^stat ~  A/
A  tat. A /perfect

It is obvious from this definition that V  is always a  number between zero and one.

Now suppose and are the hit and false alarm rates expressed as functions

of the probability threshold t t* .  For a given ratio of hedging cost C  to the potential loss L 

if the action is not taken, the user’s value of the forecast is

K p tim a i =m axV r(7T*), (4.14)7T
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where V(ir*) is calculated as follows

min ( £ . 0 )  -  F (?r*)f (1 -  O) +  H(w*) ( l - ^ ) 0 - 0  
V(n*) =  ! (1  ^  --------- . (4.15)

m m { T ' ° ) - T °

This is an absolute dollar value associated with the forecasting rule P(A; z), provided that 

the ratio of the dollar values C  and L  is known. Even though the exact implementation 

of this general recipe ultimately depends on the context of the specific problem and ideally 

should be tied to the particular hedging strategy that could be used by the decision maker, 

it is important to provide the trader with a full family of decision rules 7r„ > w*. ir* € (0; 1), 

since the false alarm and the hit ratios ultimately depend on the threshold probability tt*, 

according to (4.14) and (4.15).

4.6.4 Forecasting the Probabilities of Buyer- and Seller-Initiated  

Transactions

Direction of next transaction on the market is an issue of ultimate importance for limit 

order traders who are intrinsically interested in fast execution of their limit orders at favor­

able prices. The prevalence of buyer- or seller-initiated transactions on the market may be 

intimately, but non-trivially related to the appreciation or depreciation of exchange rates 

as it might signal the informational advantage of the counterparties initiating the trades. 

Investigation of dynamic links between the order flow (which is the difference between the 

number of buyer- and seller-initiated transactions), appreciation or depreciation of trans­

action price, and various measures of limit order book liquidity is a  dominant topic in the 

modern empirical microstructure literature (see the brief review in Chapter 1) and one of the 

main objectives of the present research. Therefore it would be natural to verify the ability 

of the model to issue the warnings about unusually high or low probabilities of transactions 

on the sell and buy side of the limit order book.

First, we evaluate the ability of the PC A factor model with five principal components 

(section 4.4), based on the estimates of risk indices Yr =  U '7 r reported in Tables 4.10, 4.11,
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and 4.12, to provide a good in-sample fit between the realized and forecast probabilities of 

buyer- and seller-initiated transactions. As we have some freedom to select the number of 

event categories, we choose a  coarser event classification scheme than the one with S  =  14 

observable risks used in the original model estimated in sections 4.2-4.4. Even though we 

started with 5  =  14 observable risks (marked by single and double stars in Table 4.1), their 

number was later reduced by pooling the events of types A l, A2, A3 in the “Sell Trade” 

category AA and the events of types B l, B2, B3 in the “Buy Trade” category BB, and 

by collapsing the events of types A4 and A5 into the “Ask Price Improvement” category 

A P+ and the events of types B4 and B5 in to the “Bid Price Improvement” category BP+. 

The composition of the event classes A6, B6, AC6, and BCG corresponding, respectively, to 

“Ask Depth Improvement” , “Bid Depth Improvement” , “Ask Touch Cancellation” , and “Bid 

Touch Cancellation” events were unchanged but the categories were renamed as AD+, BD+, 

A —, and B—, respectively. The modified event classification scheme with 5  =  8 observable 

categories is shown in Table ??.

Figure 4.17 gives an example of dynamic evolution of forecast probabilities for buyer- 

and seller-initiated transactions. The sample period shown on the graph is chosen to be 

identical to the one used to demonstrate the evolution of bid, ask, and transaction prices 

on Figure 4.9. The probability forecasts are based on formulas (4.7) and (4.6) as explained 

in the last paragraph under the assumption that no events occured at least for one second 

after the previous observable limit order book event, which explicitly takes into account the 

reaction time of the potential forecast user. The first seven minutes of the sample period 

captured on Figures 4.9 and 4.17 was the period of heavy buyer pressure accompanied by 

a rapid growth of market price by almost ten tick points. This was also the period when 

our competing risks model produces the probability forecasts which are much larger for buy 

than for sell transactions. The last portion of the sample covers the period when the price 

stabilizes just under the new level DEM 1.7575 per US dollar and is supported by a fairly 

strong “resistance” on the sell side. The sell and buy transaction probability forecasts for 

this period are approximately equal to each other on average, even though the fraction of
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epochs terminated by seller-initiated transactions is slightly higher than predicted in this 

subperiod.

The quality of probability forecasts based on formulas (4.7) and (4.6) is evaluated using 

Wilks reliability diagrams reviewed in subsection 4.6.2. The graphs on Figure 4.18) show 

the reliability plots for the forecasts of buyer- and seller-initiated transactions made under 

assumption tha t no events occured at least for one second after the previous observable 

limit order book event. The first two graphs show the reliability plots for the probability 

forecasts of buyer-initiated transactions (graph 1) and seller-initiated transactions (graph 2) 

matched with the frequencies of buyer- and seller-initiated transactions observed over the 

estimation period of the first three days (31391 epochs). The graphs in the lower portion 

of Figure 4.18 show the reliability plots for the probability forecasts of buyer- and seller- 

initiated trades (graphs 3 and 4, respectively) when the forecast probabilities are matched 

with the corresponding transaction frequencies observed in the out-of-sample period covering 

the last two days (19385 epochs). Both sell and buy event forecasts offer high resolution with 

a broad range of covered probabilities. The forecasts also have good reliability properties 

as they do not reveal a  strong tendency to deviate systematically from the main diagonal 

line th a t corresponds to perfect reliability. Even though the probability forecasts slightly 

underpredict the probabilities of buy and sell trades when the predicted probabilities are 

very small, this tendency towards overconfidence (underprediction of unlikely seller- and 

buyer-initiated transactions) is fairly weak. The overconfidence (underprediction) bias for 

the rare events is slightly stronger when the forecasts are evaluated out-of-sample, which 

can be easily detected from the deviations of left tails of reliability plots on the last two 

graphs from the perfect reliability line. This might be an issue of concern if the forecasts 

are ultimately used to measure the risk of transactions th a t might occur in the undesirable 

direction. However, even with this small caveat that must be taken into consideration by 

the ultimate users of forecast, the out-of-sample performance of the competing risks model 

turns out to be surprisingly good.

The high degree of persistence detected on the diagrams for cross-correlograms of PCA
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factors (Figures 4.12 and 4.13) suggests that at least some of the factors are unlikely to 

change much over a relatively short time period that might be covering more than one 

epoch. Therefore, it may be interesting to compare the quality of forecasting rules tha t rely 

on the principal components derived from the competing risks model and the performance of 

some benchmark forecasting rules based on the current and lagged directional indicators. In 

our last exercise, we evaluate the quality of forecasts for the event that the next transaction 

in the limit order book will be initiated by buyer or seller within the next 30 seconds, 

or no trade will be recorded in the next 30 seconds since the time of forecast. The “naive” 

benchmark used in our comparisons will be based on the trinomial logit regression of buy, sell, 

or no-trade indicator with the covariates given by the signs of ten most recent transactions 

(±1 if transaction was initiated by seller/buyer, and zero if no transaction occurred). The 

only information used to predict the direction of next transaction in this simple “directional 

momentum” model is the direction of the last several trades. The performance of this simple 

forecasting model will be compared with the multinomial logit model with the index of 

covariates given by the first five PCA factors.32

The two diagrams in the left column on Figure 4.19 show the reliability plots for the 

forecast of event tha t the next transaction in limit order book will be buyer-initiated and 

occur in 30 seconds after the time of forecast. Similarly, the two diagrams in the right 

column on Figure 4.19 show the reliability plots for probability forecasts of event th a t the 

next transaction in limit order book will be seller-initiated and occur in 30 seconds since 

the time of forecast. The reliability plots in the first row are based on the trinomial logit 

regression with the covariates given by the five competing risks PCA factors. The reliability 

plots in the second row are based on the benchmark forecasting model based on the trinomial 

logit regression with the covariates given by signs of last 10 transactions (±1 if transaction

32Since the efficient algorithm generating multistep forecasts in the competing risks framework is currently 

unavailable, and would require, in particular, the dynamic multistep forecasts of the covariate structure or 

the factor structure, we come up with a shortcut solution that ignores the dynamic properties of covariates 

but keeps intact the general structure o f the model. The development of a truely dynamic forecasting model 

is left for future investigation.
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was initiated by seller/buyer). All diagrams are produced from the sample covering the 

estimation period 6 am to 5 pm GMT on October 6-8. 1997.

Since the patterns of plots on the upper two diagrams on Figure 4.19 match very closely 

the main diagonal, we can conclude that the PCA factor model fits the data  much better than 

the “naive” benchmark based on the directional indicators. Moreover, the PCA factor model 

also has better discrimination properties as the range of probability forecasts based on this 

model is substantially wider. Apart from the slight downward bias of probability forecasts 

for small probabilities, the PCA factor model appears to provide a better fit to the empirical 

data in comparison to the alternative model. Now we check whether the PCA factor model 

is capable of giving the warnings about unusually high (or unusually low) probabilities that 

the next trade will be initiated by buyer or seller.

Figure 4.20 is analogous to Figure 4.19 in all respects, except that it shows the reliability 

plots of forecasts matched to the data  from the out-of-sample period 6 am to 5 pm GMT on 

October 9 and October 10, 1997. Again, the PCA factor model delivers the forecasts that 

are more reliable and have much better resolution properties than the forecasts based on 

the alternative “momentum-based” model. Figure 4.20 also indicates a problem tha t seems 

to deteriorate with the forecast horizon.33 In particular, the forecasts based on our model 

appear to be overconfident in the sense tha t the model underpredicts low probability events 

(left tails on the reliability plots are bent upward) and overpredicts high probability events 

(right tails on the reliability plots are bent downward), which may also serve as an evidence 

of rapid reaction of market participants to extremely high or low probability signals. As the 

quality of information contained in the PCA components quickly deteriorates as the forecast 

horizon increases, continuous monitoring of the relevant market information and updating 

the risk indices are crucial conditions for the success in this highly competitive segment of 

foreign exchange market.

33The reliability plots ol'one-minute-aliead probability forecasts (not reported here) have similar properties, 

except for the more substantial biases of these plots for high and low forecast probabilities.
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4 .7  A ppendix: G raphs and Tables

Price
(DEM/USD)

1.7515
1.7514
1.7513
1.7512

1.7510
1.7509
1.7508
1.7507
1.7506
1.7505

0 1  2 3 4 5 6 7 8 9  10 11 Quantity
($mln.)

Figure 4.1: Example of supply and demand curves from Reuters D2000-2 dealing system

Figure 4.1 displays the stale of the Reuters D2000-2 electronic limit order book at a particular moment 
in time. The ersatz supply and demand curves on the market for US dollars are represented by limit sell 
and buy orders waiting their execution. Two limit orders, for one and two million dollars, are available at 
the best market sell price of DEM 1.7512 per dollar. Additionally, there is one limit order for three millions 
at the tusk price of DEM 1.7513. one limit order for one million at the ask price of DEM 1.7514, and two 
limit orders for one million each at the ask price of DEM 1.7515 per US dollar. On the bid side, there is 
one limit order to purchase two millions at the best market buy price of DEM 1.7509 per dollar, which is 
followed (in the order of priority) by three limit orders for two million, one million, and two million dollars 
at the bid price of DEM 1.7507, a limit order for two million at the bid price of DEM 1.7506, a limit order 
for one million at the bid of DEM 1.7505, mid another large limit order at the same price (the size of this 
buy limit order is unclear from the graph). Note that traders observe only the best market buy and sell 
prices DEM 1.7509 and DEM 1.7512, along with the quantities 82 inln. and $3 mln., respectively, on their 
trading screens.
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Price
(DEM/USD)

1.7515 
1.7514 
1.7513 
1.7512 
1.7511 
1.7510 
1.7509 
1.7508 
1.7507 
1.7506 
1.7505

------------f

■New limit order

u
0 1 2 3 4 5  6 7 8 9  10 11 Quantity

 ......               (Sniln.)..

Figure 4.2: Supply and demand curves after the price improvement on demand side

Figure 4.2 displays the change in the state of the Reuters D2000-2 electronic limit order book shown 
on Figure 4.1 after arrival of a new limit order to purchase one million dollars at the bid price DEM 1.7510 
per dollar. The arrival of new limit order leads to reduction of the market bid-ask spread, and shifts the prior 
ersatz demand curve to the right. The improved market liquidity associated with such an event validates the 
term “price improvement". However, the quantity (depth) available at the improved bid price DEM 1.7510 
per dollar is smaller than the bid depth at the previous bid quote DEM 1.7509 per dollar oil Figure 4.1.
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Price A
(DEM/USD)

1.7515
1.7514
1.7513
1.7512
1.7511
1.7510
1.7509
1.7508
1.7507
1.7506

■ 1.7505

I

i i

2 I jy*  New limit order
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1

2 3 4 5 6 7 9 10 11 Quantity
(Smln.)

Figure 4.3: Supply and demand curves after the depth improvement on demand side

Figure 4.3 displays the change in the state of the Reuters D2000-2 electronic limit order book shown 
on Figure 4.1 after arrival of a new limit order to purchase one million dollars at the bid price DEM 1.7509 
per dollar. The arrival of new limit order does not change the market bid-a.sk spread, but it shifts the portion 
of prior ersatz demand curve below the best bid price DEM 1.7509 per dollar to the right. The improved 
market depth on the bid side associated with such an event validates the term “depth improvement’' .
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Price A
(DEM/USD)

1.7515 
1.7514 
1.7513 
1.7512 
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1.7510 
1.7509 
1.7508 
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1.7506 
1.7505
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(Smln.)

Figure 4.4: Supply and demand curves after the bid arrival one tick below the touch

Figure 4.4 displays the change in the state of the Reuters D2000-2 electronic limit order book shown 
on Figure 4.1 after arrival of a new limit order to purchase one million dollars at the bid price DEM 1.7508 
per dolkir, which is lower than the best, bid price DEM 1.7509 available on the market. The arrival of new 
limit order does not change the public information on the Reuters D2000-2 trading screens, in particular, it 
does not affect the size of the bid-ask spread and the market depth at the touch (best bid quote). However, 
the market liquidity improves in a broader sense as the market depth one tick below the best bid quote 
increases.

178

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Price A
(DEM/USD)

1.7515
1.7514
1.7513
1.7512
1.7511
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1.7509
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1.7505
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Figure 4.5: Supply and demand curves after the bid arrival two ticks below the touch

Figure 4.5 displays the change in the state of the Reuters D2000-2 electronic limit order book shown 
on Figure 4.1 after arrival of a new limit order to purchase one million dollars at the bid price DEM 1.7507 
per dollar, which is two ticks below the best bid price DEM 1.7509 available on the market. The arrival of 
new limit order does not change the public information on the Reuters D2000-2 trading screens, since the 
market, event is associated with improvement of market liquidity deep on the bid side of the limit order book.
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Price

(D E M /U S D )

1.7515
1.7514
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1.7505
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0 1 2  3 9 10 II Quantity
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Figure 4.6: Effect of subsidiary limit order cancellation on the demand curve

Figure 4.6 displays the change in the state of the Reuters D2000-2 electronic limit order book shown 
on Figure 4.1 after cancellation of the subsidiary limit order to purchase two million dollars at the bid price 
DEM 1.7506 per dollar. The cancellation event does not affect public information on the Reuters D2000-2 
trading screens, as it is associated with the deterioration of market liquidity deep inside the bid side of limit 
order book.
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Price
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Figure 4.7: Effect of the large market buy order on the supply and demand curves

Figure 4.7 displays the change in the state of the Reuters D2000-2 electronic limit order book shown 
on Figure 4.1 after arrival of a market order to purchase five million dollars, which was submitted at the best 
ask market price of DEM 1.7512 per dollar. Since the quantity available at this price is only three million 
dollars, part of demand for liquidity created by the new market order arrival is not satisfied. The unmatched 
portion of the market order gets cancelled immediately, while the best ask price goes up one tick to DEM 
1.7513 per dollar.
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Figure 4.8: Effect of the large limit bid on the demand and supply curves

Figure 4.8 displays the change in the state of the Reuters D2000-2 electronic limit order book shown 
on Figure 4.1 after arrival of a limit order to purchase five million dollars at the limit order price which 
coincides with the best ask market price of DEM 1.7512 per dollar previously available on the market. The 
situation is analogous to the submission of buy market order (Figure 4.7), except that the unmatched portion 
of the arriving aggressive limit order remains on the limit order book, leading to the improvement of the 
best bid price by three ticks to DEM 1.7512 per dollar. The best bid price moves one tick up to DEM 1.7513 
per dollar.
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Figure 4.9: A small subsample of market bid and ask quotes and transactions in Reuters 

D2000-2 trading system

Figure 4.9 shows a small subsample of continuously sampled best market bid and ask quotes, as 
well as the times and prices of buyer- and seller-initiated transactions (marked by small white crosses and 
knots, respectively). All prices were obtained by matching limit and market orders from the original Reuters 
D2000-2 data set. The sampled time period covers the trading hours 8:20 to 8:30 a.m. GMT on Monday, 
October 6, 1997.
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Figure 4.10: Eigenvalues of principal components for the competing risk indices

Figure 4.10 displays the plot of eigenvalues corresponding to the first Q = 13 PCA factors 
of the competing risk indices r =  1..... R. Since only five of these eigenvalues are unambiguously 
above the horizontal line A =  1, which suggests PCA factors 1 through 5 can be treated as 
independent pervasive components driving the market dynamics. Even though factors 6 and 7 are 
only marginally significant, they are retained to prevent wrongful exclusion of additional, marginally 
significant factors.
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Figure 4.11: Log-eigenvalue (LEV) diagram for principal components of the competing risk 

indices

Figure 4.11 displays the LEV diagram, which is obtained by replotting Figure 4.10 on the logarithmic 
scale. The darker line plots the eigenvalues corresponding to the PCA factors of the competing risk indices 
T =  1, .... R. Deviations of plot from the linear pattern on the left for low eigenvalues suggests that retention 
of Q =  5 PCA factors for further analysis would be appropriate. The choice of Q =  5 is confirmed by the 
comparison of the actual eigenvalues with the 95% confidence bounds shown on the graph in pink color that 
are obtained by a bootstrap procedure under the null hypothesis that all eigenvalues corresponding to the 
Q t h  and higher-order PCA factors are equal to each other.
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Figure 4.12: Cross-correlograms of PCA factors 1 to 5 driving the limit order book dynamics

Figure 4.12 displays the estimated off-diagonal terms of cross-correlograms of the first five PCA factors 
associated with the aggregate risks of limit order book events. Cell ('/. j )  of the chart contains the estimated 
cross-correlogram of factors i and j  defined by the formula

Rij(h) = Covr{f j n. f jM+h),

where h is the lead (forward shift) of factor j  relative to factor i measured by the number of epochs (the 
definition of epoch is given in section 3.2). All calculations are performed for the values of ll between —70 
and 70 and based on the subsample covering the liquid trading hours (G a.m. to 5 p.m. GMT) on October 
G-S. 1997.
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Figure 4.13: Autocorrelograms of the five PCA factors driving the limit order book dynamics

Figure 4.13 displays the estimated autocorrelation functions (autocorrelograms) for the first five PCA  
factors associated constructed from the risk indices of the aggregated limit order book activity. Autocorrelo­
grams of factor 1 (shown by the unmarked solid line) and factor 3 (highlighted by “x r symbols) demonstrate 
slow rate of decline with the lag order, which is a clear evidence of long memory and potential nonstation- 
arity. Autocorrelograms of factors 4 and 5 (highlighted by pluses and squares, respectively) also decline 
relatively slowly which serves as an evidence of long memory. The autocorrelogram of factor 2 (highlighted 
by circles) rapidly declines to zero with the lag order and becomes indistinguishable from zero at lag 50. All 
calculations are performed using the subsample covering only the liquid trading hours 6 am to 5 pm GMT 
on October 6-8. 1997.
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Figure 4.14: Cross-correlograms of activity imbalance, buyer pressure, and bull market mo­

mentum (PCA factors 2, 3 and 5)

Figure 4.14 highlights the portion of the estimated cross-correlograrn 4.12 that displays the interaction 
of the second, third, and fifth PCA factors. These factors are identified in the text as the limit order book 
activity imbalance (factor 2), the buyer pressure (factor 3). and the bull market momentum (factor 5). Cell 
('i,. j )  of the chart contains the estimated cross-correlogram of factors i  and j  defined by the formula

=  Corr(/,; „, ,/j.»+/,).

where h  is the lead (forward shift) of factor j  relative to factor % measured by the number of epochs (see 
definition of epoch in section 3.2). All calculations are performed for the values of h  between —70 and 70 
and based on the subsample covering the liquid trading hours (G a.m. to 5 p.m. GMT) on October 6-8, 
1997.
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Figure 4.15: A representative simulated history of transaction prices, signed order flow, and 

imbalance of the limit order book

Figure 4.15 displays the simulated history of transaction prices (in a white pattern), the limit order 
book imbalance measured as the difference between the total dollar value available for sale and the total 
dollar value available for purchase (in a darker grey pattern), and the signed cumulative flow of trades (in 
a lighter grey pattern) over the period of 10.000 seconds. The simulations use the constrained smoothed- 
censored plan described in section 3.0 that was applied to the system of competing risks calibrated to the 
covariate coefficients reported in Tables 4.3-4.8.
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Figure 4.16: Cumulative distribution functions of time to first seller-initiated transaction as 

a function of initial state and transaction price

Figure 4.16 illustrates the asymmetry in the dependence of next seller-initiated transaction price on 
the initial conditions and the time elapsed since hist sale. The alternative curves show the plots of simulated 
cumulative distribution functions for the time to first seller-initiated transaction given that this trade occurs 
at the specified price. The total number of simulations is 500. All simulations me performed for a fixed 
simulated history of trading (dominated by seller-initiated transactions) as described in subsection 4.5.2.
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Figure 4.17: A sample of one-step-ahead forecast probabilities of buyer- and seller-initiated

transactions

Figure 4.17 shows a small subsample of one-step forecast probabilities of buyer- and seller-initiated 
transactions made after at least one second elapsed since the previous event, as well as the times of actual 
buyer-initiated transactions (shown by crosses) and seller-initiated transactions (shown by knots). The 
forecasts are based on the version of PCA factor competing risks model with S  = 8 types of observable 
risks and the covariate structure comprised by Q =  5 PCA factors as described in subsection 4.6.4. The 
sample period covers the episode 8:20 to 8:30 a.m. GMT on Monday, October 6. 1997, which is identical to 
the period used to produce the graph of the best market bid and ask quotes and transactions (Figure 4.9). 
The forecast probabilities of buyer-initiated trades are shown on the plot as the distance of lower solid line 
from the horizontal zero-probability line. The forecast probabilities of seller-initiated trades are shown as 
the distance of the upper solid line from the 100% probability horizontal line.
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Reliability Plots for Buy and Sell Forecasts

Figure 4.18: Reliability plots for one-step-ahead probability forecasts of buyer- and seller- 

initiated transactions

Figure 4.18 displays the reliability plots for one-step-ahead forecast probabilities of buyer- and seller- 
initiated transactions made after at least one second elapsed since the previous event. The forecasts sire 
based on the version of PCA factor competing risks model with 5  =  8  types of observable risks and the 
covariate structure comprised by Q =  5 PCA factors as described in subsection 4.6.4. Two diagrams on 
the top are based on the liquid trading hours of the first three trading days (the model estimation period). 
The left and right diagrams on the top plot, respectively, the fractions of epochs terminated with buy and 
sell transactions against the forecast probabilities of such events. Two diagrams on the bottom are based 
on the liquid trading hours of the last two days (the out-of-sample period). The left and right diagrams on 
the bottom plot, respectively, the fractions of epochs terminated with buy and sell transactions against the 
forecast probabilities of such events.
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Figure 4.19: In-sample reliability plots for probability forecasts of the direction of next trade 

in 30 sec.

Two diagrams oil the left-hand side of Figure 4.19 show reliability plots for probability forecasts of 
the event that the next transaction in the limit order book will be initiated by a buyer and will occur in 30 
seconds since the time of forecast. Two diagrams on the right-hand side of Figure 4.19 show reliability plots 
for probability forecasts of the event that the next transaction in the limit order book will be initiated by 
a seller and will occur in 30 seconds since the time of forecast. The forecasts evaluated on the top section 
of the graph are produced by the trinomial logit regression with the covariates given by the five competing 
risks PCA factors. The forecasts evaluated on the lower section of the graph are produced by the benchmark 
forecasting model based on the trinomial logit regression with the covariates given by the signs of last 10 
transactions (± 1  if the transaction was initiated by seller/buyer). All diagrams are based on the data from 
the estimation period G a.m. to 5 p.m. GMT on October 6-8. 1997.
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Figure 4.20: Out-of-sample reliability plots for probability forecasts of the direction of next 

trade in 30 sec.

Two diagrams on the left-hand side of Figure 4.20 show reliability plots for probability forecasts of 
the event that the next transaction in the limit order book will be initiated by a buyer and will occur in 30 
seconds since the time of forecast. Two diagrams on the right-hand side of Figure 4.20 show reliability plots 
for probability forecasts of the event that the next transaction in the limit order book will be initiated by 
a seller and will occur in 30 seconds since the time of forecast. The forecasts evaluated on the top section 
of the graph are produced by the trinomial logit regression with the covariates given by the five competing 
risks PCA factors. The forecasts evaluated in the lower section of the graph are produced by the benchmark 
forecasting model based on the trinomial logit regression with the covariates given by the signs of last 10 
transactions (± 1  if the transaction was initiated by seller/buyer). All diagrams are based on the data from 
the out-of-sample period covering the trading hours 6 a.m. to 5 p.m. GMT on October 9 and October 10, 
1997.
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Table 4.1: Classification of arrival and cancellation events on the sell side of limit order book

Risk (?•) Limit order price P* Price change Quantity change

Al** P* < P , i d P b i d  ' S i  P i i s k Q b i d  I T  Q i i s k  I T

A2** Market sell order P b i d  \  P a s k  same Q b i d  1 if A P b i d  =  0

A3** P * = P b i d P b i d  P i . s k Q b i d  I T  Q a . s k  I T

A4* P* ~  P a *  <  “ I Pask I Q a s k  —* Q*(lim.order size)

A5* P *  ~  P a s  k  =  1 P u s k  1 Q a . s k  Q*(lim.order size)

A6 * P* ~  P a s k  =  0 No price effect Q a . s k  T

A7 P* ~  P a s k  =  1 No price effect No quantity effect

AS, A9, A10, and A ll  defined similarly

A12 5 < P *  -  P l u s k  < 10 No price effect No quantity effect

A13 10 <  P *  -  P a s k  < 20 No price effect No quantity effect

A14 P *  -  P a . s k  > 2 0 No price effect No quantity effect

AC6 * P *  -  P a s k  =  0 P a s k  T Q a s k  1 if APask =  0

AC7

r*HIID?1*

No price effect No quantity effect

AC8 , AC9, AC10, and AC11 defined similarly

AC12 5 < P *  -  P * *  <  10 No price effect No quantity effect

AC 13 1 0  <  P *  -  P a s k  < 2 0 No price effect No quantity effect

AC 14 P *  -  P a s k  > 2 0 No price effect No quantity effect
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Table 4.2: Covariates in the Cox regressions of competing risks

Covariate Description

Slippage Current midquote minus last transaction price

Lt. Return Last minus 2nd-to-last transaction price

Spreacl>o Best ask minus best bid quote, or zero, whatever is larger

Spread2 0 (Best ask minus best bid quote)2, or zero, whatever is larger

A P^k Change of ask quote between last and 2nd-to-last events

A P ask,-l Change of ask quote between 2nd- and 3rd-to-last events

APhid Change of bid quote between last and 2nd-to-last events

APbid.-l Change of bid quote between 2nd- and 3rd-to-last events

log(Qask) Log depth at best ask quote, or log $10M, whatever is less

Q ik 1 if log depth at ask equals $10M, zero otherwise

Alog(Qa)ik) Change of log(Qask) if A Pask=0 , zero otherwise

Alog(Qajjkr i) Change of log(Qa.sk,-i) if A P ask= 0 &:APask.-i=0 , zero otherwise

lo§(Qbid) Log depth a t best bid quote, or log $10M, whatever is less

Qbid 1 if log depth at bid equals $10M, zero otherwise

Alog(Qbid) Change of log(Qbid) if APbid=0 , zero otherwise

Alog(Qbid,-i) Change of log(Qbid.-i) if APbid=0 &APbid,-i=0 , zero otherwise

Side 1 if last trade seller-initiated, - 1  if buyer-initiated

Side_i 1 if 2 nd-to-last trade seller-initiated, - 1  if buyer-initiated

Fo-o" Signed number of trades 0 to 5 sec. prior to last event

F 5-io” 1 Flo-is”, F 15.30”, F 30.60”, F 1.0’, F2-5’, F 5.15’ defined similarly

T q-5” Number of trades 0 to 5 sec. prior to last event

T 5.10”, T 10-15” 1 T 15-ao” • T 30.60", Ti_2’, To.r,-, T 5.15' defined similarly
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Table 4.3: Estimated price and quantity coefficients for competing risks of seller-initiated

events

Risk type (r) 
(i)

Slippage
(2)

Spread
(3)

A  P a s k  

(4)
A P b i d

(5)
Q a s k

(8)
A Q a s k

(7)
Q b i d

(3)
A Q b i d

0 )

Sell <  P bid 0.103 -0.754 0.437 0.172 -0.006 -0.479 —0.436 -0.381

Market sell 0.067 -0.525 0.135 -0.069 0.174 0.361 0.068 -1.161

Sell =  Pbid 0.081 -0 .670 0 .2 2 2 0.091 0.140 0.041 0.005 -1.146

Sell <  P a s k - 1 0.062 0.451 0.089 -0.059 0 .1 2 0 -0.013 0.053 -0 .255

Sell a t P a s k —1 0.017 0.029 0.048 - 0 .1 0 1 0.302 -0.235 0.005 -0 .253

Sell a t P a s k -0 .105 0.017 -0.051 -0.124 0 .1 2 2 0.798 0.017 -0 .100

Sell a t P a s k + 1 -0 .176 -0 .187 -0.130 -0.159 - 0 .1 0 1 0.060 0.058 0.025

Sell a t P a s k +2 -0.126 -0.162 -0.142 -0.136 -0.080 0.081 0.125 0.003

Sell a t P a s k + 3 -0 .138 -0 .037 - 0 .1 2 0 -0.113 -0.026 0.037 0.080 -0 .005

Sell a t P a s k + 4 -0 .139 -0.153 -0.115 -0.012 -0.043 0.067 0.042 -0 .009

Sell a t P a s k + 5 -0 .208 -0 .091 0.007 0.042 0.103 0.004 -0.045 0.051

Sell <  P a s k + 1 0 -0 .135 - 0 .1 0 1 -0.080 -0.048 -0.081 0.013 0.025 -0.000

Sell <  P a s k + 2 0 -0 .027 0.011 -0.098 -0.043 0.042 -0.028 0.009 -0 .003

Cancel at P a s k -0 .149 -0 .013 -0.014 -0.052 0.600 0.205 0.017 -0 .228

Cane, at P a s k + 1 -0 .257 -0.128 0.039 -0.096 -0.046 -0.040 0.014 0 .1 0 1

Canc.at P a s k + 2 -0 .299 - 0 .1 1 2 - 0 .1 0 2 0.050 0.029 -0.072 0.020 0.092

Canc.at P a s k + 3 -0 .158 -0 .116 -0 .078 -0.152 0.007 -0.058 -0.030 0.152

Canc.at P a s k + 4 - 0 .2 1 2 -0 .152 -0.153 0.021 -0.067 -0.015 0.015 0.127

Canc.at P a s k + 5 -0 .167 -0 .159 -0 .037 0.013 0.191 -0.170 0.029 0.145

Canc.< Pask+10 -0.153 -0 .016 -0 .009 0.005 0.009 -0.047 0.048 0.091

Canc.< P a s k + 2 0 -0 .036 -0 .088 -0.037 -0.070 -0.050 -0 .007 -0.028 0 .1 2 1
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Table 4.4: Estimated lagged signed order flow coefficients for competing risks of seller-

initiated events

Risk type (r) 
(i)

Side
(2)

Side_i
(3)

F 0-5” 
(4)

Fq-IO"
(5)

FlO-15”
(9)

F 15-30”
(T)

F 30-6O”
(8)

F 1_9’ 
(9)“

Sell <  Pbid 0.311 0.288 -0 .017 0.018 —0.028 -0 .003 0.008 0.002

Market sell 0.319 0.170 0.044 0.013 -0 .003 -0.004 0.002 -0.001

Sell =  Pbid 0.238 0.104 0.029 - 0.001 -0.024 -0.006 0.003 0.000

Sell <  Pllsk- 1 0.216 0.075 0.018 -0 .008 0.004 0.005 0.004 -0.000

Sell at Pask-I 0.105 0.047 0.028 -0.019 -0.014 -0.009 0.000 - 0.001

Sell at P!Uik 0.022 -0 .017 0.034 -0.013 -0.017 -0.008 -0.005 -0 .004

Sell at Pask+1 -0.021 -0 .018 0 .0 2 1 - 0 .0 2 2 -0.014 - 0 .0 1 0 -0.005 -0.006

Sell a t P ^ + 2 0.024 -0 .017 -0.001 - 0 .0 2 2 -0.023 -0.008 -0.008 - 0.002

Sell at Pask+3 -0.057 -0 .027 0.011 -0 .034 -0.024 -0.009 -0.007 -0 .005

Sell at Pask+4 -0.085 0.035 0.001 -0 .028 -0.034 -0.017 -0.008 -0 .005

Sell a t Pask+5 0.011 -0 .008 -0.001 -0 .007 -0.030 -0.016 -0 .006 -0 .008

Sell <  P a s k + 1 0 -0.000 0.010 0.007 -0 .025 -0.026 -0.013 -0.008 -0.005

Sell <  P a s k + 2 0 -0.066 -0.04!) 0.001 -0 .033 -0.025 - 0 .0 2 1 -0.009 - 0 .0 1 0

Cancel at Pask 0.042 0.085 0.014 0 .0 2 2 0.007 -0 .007 - 0.002 -0 .003

Canc.at Pask+1 0 .1 1 2 0.083 0.030 0.032 -0 .009 - 0 .0 1 2 -0.003 -0 .003

Canc.at P a S k + 2 0.095 0.167 0.025 0.040 -0.005 -0 .007 -0.004 -0 .004

Canc.at P a s k + 3 0.054 0.175 0.025 0.043 0.015 - 0.002 - 0.002 -0 .007

Canc.at Pilsk+4 0.138 0.097 0.039 0.042 0.015 -0 .003 -0.005 -0 .008

Canc.at P a s k + 5 0.138 0.144 0.026 0.018 0.028 -0 .008 0.001 -0 .003

Canc.< P a s k + 1 0 0.150 0.159 0.023 0.036 0 .0 2 0 0 .0 1 0 0.005 - 0.001

Canc.< P Vs k + 2 0 0.076 0.041 0.020 0.005 0.028 0.013 0.013 0.007
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Table 4.5: Estimated lagged trading activity coefficients for competing risks of seller-initiated

events

R is k  t y p e  (•/■) 
(i)

T o - 5 ”

(2)
T s - i o ’-

(3)
T 10-15” 

(4)
T 15-30"

(5)
T 3O-6O”

(6)
T , . 2 ’

(7)
T 0. 5’

(8)
T5-15'

(9)

S e l l  <  P m 0 . 0 6 9 0.009 0 . 0 3 7 0.004 0.004 0.006 -0.001 0.001

M a r k e t  s e l l 0 . 0 1 9 0.008 0 . 0 1 8 0 . 0 0 6 0 . 0 0 4 0 . 0 0 3 0.001 0.001

S e l l  =  P bic) 0 . 0 4 3 0 . 0 2 5 0 . 0 1 4 0 . 0 0 7 0 . 0 0 5 0.002 0.001 0.001

S e l l  <  P iKk- l 0 . 0 3 7 0.011 0.008 -0.005 0.002 0.003 0.002 0.001

S e l l  a t  P i s k — 1 0 . 0 1 4 0.022 0.008 0.001 0 . 0 0 7 0 . 0 0 3 0.002 0.001

S e l l  a t  P 11Sk 0 . 0 1 9 0 . 0 2 7 0.022 0 . 0 0 9 0 . 0 0 8 0 . 0 0 3 0.002 0.001

S e l l  a t  i ^ s k + l 0.020 0 . 0 3 4 0 . 0 1 6 0.011 0 . 0 0 7 0 . 0 0 3 0.002 0.001

S e l l  a t  P a s k + 2 0 . 0 4 1 0 . 0 2 8 0 . 0 2 9 0 . 0 1 7 0 . 0 0 9 0.000 0.002 0.001

S e l l  a t  P a s k + 3 0 . 0 2 4 0 . 0 3 4 0 . 0 2 4 0.022 0.012 0 . 0 0 5 0.001 0.001

S e l l  a t  T ^ s k + 4 0.021 0 . 0 4 1 0.011 0 . 0 1 4 0.010 0.004 0.002 0.002

S e l l  a t  P a s k + 5 0 . 0 3 5 0 . 0 3 3 0 . 0 3 3 0 . 0 3 3 0.006 0.005 0.001 0.001

S e l l  <  P a s k + 1 0 -0 .002 0 . 0 3 9 0 . 0 3 2 0 . 0 2 6 0 . 0 1 3 0 . 0 0 7 0.001 0.001

S e l l  <  P a s k + 2 0 0.004 0.017 0 . 0 2 8 0 . 0 1 5 0 . 0 1 3 0.005 0 . 0 0 4 0.000

C a n c e l  a t  P ^ k 0 . 0 4 4 0.008 0.002 0.001 0.002 - 0 . 0 0 0 0.000 0.001

C a n c .a t  P a s k + 1 0 . 0 2 7 0.003 0.005 0.004 0 . 0 0 5 0 . 0 0 5 0.002 0.001

C a n c .a t  P a s k + 2 0 . 0 3 6 0.011 0 . 0 1 8 0.008 0.006 0 . 0 0 4 0.002 0.001

C a n c .a t  P a s k + 3 0 . 0 3 5 0.010 0.015 0 . 0 1 5 0.005 - 0.001 0 . 0 0 3 0.001

C a n c .a t  P g s k + 4 0.019 0.014 0.009 0 . 0 1 6 0.002 0.002 0 . 0 0 3 0.001

C a n c .a t  P a s k + 5 0 . 0 4 1 0 . 0 4 2 0.020 0.012 0.008 - 0.001 0 . 0 0 3 0.000

C a n c .<  P a s k + 1 0 0 . 0 3 1 0.018 0.005 0.008 0.004 0.003 0.001 0.002

C a n c .<  P iVs k + 2 0 0 . 0 2 9 0.021 0.016 0.012 0.002 -0.004 0.002 0.002
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Table 4.6: Estimated price and quantity coefficients for competing risks of buyer-initiated

events

Risk type (r) 
U)

Slippage
(2)

Spread
(3)

APbid
(■'0

APask
(5)

Q bid
«i)

AQbid
(7)

Qask
(8)

AQbid
0 )

Buy > -0.269 -0.687 —0.224 - 0 .2 1 2 0.107 -0.518 -0 .543 -0 .503

Market buy -0.132 -0.568 —0.133 0.087 0.194 0.552 0.053 - 1 .1 0 2

Buy =  Pask - 0 .2 2 1 -0.760 -0.168 -0.050 0.199 -0 .132 -0 .032 -1 .136

Buy > Pbid+1 - 0 .1 1 0 0.468 - 0 .1 0 2 0.037 0.175 -0 .359 -0 .002 -0 .328

Buy at Pbid+1 -0.023 0.071 -0.097 0 .1 1 0 0.234 -0 .265 -0 .003 -0 .090

Buy at P bid 0.047 0.061 0.066 0.080 0.113 0.709 0.030 -0 .179

Buy at Pbid-1 0.066 -0.177 0.178 0.168 -0.092 0.062 0.069 0.017

Buy at Pbid- 2 0.053 -0.161 0 .2 1 1 0.135 -0 .040 0.052 0.005 0.045

Buy at Pbid- 3 0.053 -0.126 0.179 0.035 -0.054 0.071 -0 .012 0.045

Buy at Pbid- 4 0.058 -0.119 0.119 0.116 -0 .094 0.068 0.085 0.013

Buy at Pbid- 5 0.020 0.079 0.158 0.002 0.096 -0 .043 0.002 0.028

Buy >  P^d-1 0 0.055 0.002 0.079 0.144 0.042 -0 .009 -0 .036 0.038

Buy >  Pbid-2 0 0.043 -0.002 0.018 0.055 0.014 -0 .036 0.021 0.008

Cancel at Pbid 0.077 -0.019 -0.023 0.035 0.600 0.111 0.003 -0 .199

Canc.at Pbid- 1 0.179 -0.106 -0.018 0.059 -0 .043 -0.026 0.009 0.092

Canc.at Pbid—2 0.286 -0.134 0.060 0.029 -0.031 -0 .072 -0 .011 0.128

Canc.at Pbid- 3 0.156 -0.088 0.118 0.047 -0 .054 -0.085 -0 .0 0 2 0.143

Canc.at Pbid- 4 0.175 -0.057 0.140 0.014 0.042 -0.098 -0.131 0.182

Canc.at Pbid—5 0 .1 1 0 0.219 0.139 -0 .039 0.097 -0.132 -0 .1 0 0 0.182

Canc.> Pbid—10 0.045 -0.033 0.072 0.036 0.048 -0.108 0.013 0.143

Canc.> Pbid—20 0.022 0 .0 2 1 0.017 0.079 -0 .060 -0 .023 0.030 0.067
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Table 4.7: Estimated lagged signed order flow coefficients for competing risks of buyer-

initiated events

Risk type (r) 
(i)

Side
(2)

Side.i
(3)

F o-5”
(4)

F 5-10”
(5)

F io-i')"
(ti)

F l5 -3 0 ”
(7)

F 30-60"
(8)

F i_o’ 
(of

Buy >  Pa.sk —0.042 -0.167 -0.041 -0 .016 0.000 -0.010 -0.005 -0 .003

Market buy —0.246 -0.125 -0.053 - 0 .0 2 0 0.001 0.001 -0.003 -0.001

Buy =  Plliik —0.158 -0.103 -0.031 -0.002 0.009 0.004 -0.004 -0.003

Buy >  P|,id+1 -0 .157 0.040 -0 .018 -0.001 0.011 -0 .000 -0.007 -0.007

Buy at Pbid+1 -0 .138 0.027 -0 .028 0.010 0 .0 2 1 0.007 - 0.002 - 0.001

Buy at P bid 0.013 0.012 -0 .025 0 .0 1 2 0 .0 2 1 0.009 - 0.000 0.001

Buy at Pbid-1 0.056 0.030 -0 .008 0 .0 1 2 0.028 0 .0 1 2 0.002 - 0.001

Buy at P Wd- 2 0.075 0.054 -0 .004 0.018 0 .0 2 0 0.003 0.003 0.000

Buy at Pbid- 3 o.oro 0.044 -0 .007 0.017 0.024 0.003 0.002 0.001

Buy at Pbid- 4 0.090 0.034 -0 .006 0.015 0.019 0.007 0.004 - 0.001

Buy at Pbid- 5 0.041 0.096 0.002 0.026 0.009 0.001 0.006 - 0.000

Buy >  Pbid -1 0 0.086 0.060 0.001 0.015 0 .0 2 0 0.005 0.009 0.004

Buy >  Pbid-2 0 0.054 0.039 -0 .020 0.011 0.017 0.013 0.003 0.006

Cancel at Pbid -0 .070 -0.069 -0.015 -0.025 -0.002 0.004 -0.002 0.002

Canc.at Pbid —1 -0 .119 -0 .023 -0.031 -0.029 -0.005 0.017 0.002 - 0.001

Canc.at Pbid—2 -0 .045 -0.132 -0.028 -0.024 0.005 0.008 0.000 - 0.001

Canc.at Pbid—3 - 0 .1 0 2 -0.090 -0.049 -0.016 -0.017 0.007 0.005 0.001

Canc.at Pbid—4 -0 .164 - 0 .1 2 0 -0 .013 -0.026 -0.014 -0 .000 0.000 0.002

Canc.at Pbid—5 -0 .027 -0.144 -0.046 -0.051 -0.003 -0.001 0.001 - 0.001

Canc.> Pbid—10 -0 .098 -0.080 -0.046 -0.037 -0.032 -0.009 0.001 0.002

Canc.> Pbid—20 -0 .073 -0.105 —0.011 -0.030 -0.035 - 0 .0 1 2 - 0 .0 1 2 -0.004
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Table 4.8: Estimated lagged trading activity coefficients for competing risks of buyer-

initiated events

Risk type (r) 
(D

To-5”
(2)

Tg-io”
(3)

Tio-io”
(4)

Ti5-30”
(5)

T 30.G0”
(6)

Ti.2*
(7)

To-5’
(8)

T 5.15’
O)

Buy > Pa.sk 0.075 0 .0 2 2 0.036 0.015 0.006 0.001 0.003 0.000

Market buy 0.030 0.008 0.018 0.012 0.007 0.002 0.001 0.001

Buy =  Pilsk 0.050 0.017 0.017 0.009 0.010 0.001 0.001 0.000

Buy > Pbki+1 0.051 0.017 0.005 0.009 0.003 0.004 0.000 0.001

Buy at Pbid+1 0.017 0.014 -0.002 0.002 0.006 0.004 0.001 0.001

Buy at Pbid 0.025 0.017 0.017 0.007 0.006 0.002 0.001 0.001

Buy at Pbid-1 0.012 0.008 0.014 0.009 0.006 0.004 0.001 0.001

Buy at Pbid- 2 0.026 0.023 0.030 0.015 0.006 - 0.000 0.001 0.001

Buy at Pbid- 3 0.031 0.014 0.012 0.019 0.008 - 0.001 0.001 0.001

Buy at Pbid- 4 0.012 0.008 0.020 0.018 0.009 0.004 0.002 0.001

Buy at Pbid—5 0.028 0.013 0.037 0.024 0.011 -0.004 0.002 0.001

Buy >  Pbid- 1 0 0.006 0.018 0.032 0.018 0.007 0.002 0.001 0.001

Buy >  Pbid- 2 0 0.014 -0.002 0.018 0.010 0.011 0.004 0.001 0.001

Cancel at Pbid 0.049 0.003 0.008 0.001 0.004 -0.001 0.000 0.000

Canc.at Pbki-1 0.031 -0.006 0.007 0.002 0.004 0.004 0.001 0.001

Canc.at Pbid—2 0.051 0.011 0.003 0.007 0.002 0.005 0.000 0.001

Canc.at Pbid—3 0.037 0.011 0.014 0.007 0.005 0.002 0.001 0.001

Canc.at Pbid—4 0.038 0.027 -0.006 0.010 0.010 0.002 0.002 0.001

Canc.at Pbid—5 0.056 0.030 0.014 0.011 0.013 0.008 - 0.001 0.001

Canc.> P^d—10 0.031 0.021 0.025 0.006 0.011 0.005 - 0.000 0.001

Canc.> Pbid—20 0.027 0.029 0.017 0.016 0.007 0.008 0.001 0.001
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Table 4.9: Representation of PCA factor indices in terms of observable characteristics of the

limit order book and recent trading history

Covariate Fact.l Fact. 2 Fact.3 Fact.4 Fact. 5 Fact.6 Fact.7

Constant -1 .186 -0.287 -0.363 -2 .496 0.227 -0.639 0.477

Slippage -0 .068 0.330 -0.230 -0 .014 -0.280 0.042 -0.166

Spread>o -0.185 0.095 0.080 0.779 -0.058 -0.169 -0.076

A P a s k 0.028 0.129 -0.229 0.036 -0.103 0.150 -0.130

A  P i, id 0.016 0.144 - 0 .2 2 1 -0 .055 -0.152 -0.367 - 0 .1 0 1

l°g ( Q a s k ) 0.033 -0.131 -0.103 0.165 -0.367 0.712 0.124

A  log ( Q a s k ) -0 .004 -0.026 -0.051 0.193 -0.765 -0.380 0.459

log(Qbid) 0.078 0.089 0.160 0.191 0.386 0.637 -0.318

A log(Qbid) -0.058 0.042 0 .0 1 2 - 0 . 0 2 0 0.684 -0.753 -0.725

Side 0.034 -0.241 -0.223 0.025 -0.184 -0.086 -0.091

Side.i 0.037 - 0 .2 1 1 -0 .140 0.072 0.013 -0.015 -0.118

P0- 5" - 0 .0 0 2 -0 .077 - 0 .0 0 1 0 .0 1 1 -0 .038 - 0 .0 0 2 0.000

P > - 10" -0 .003 -0.048 -0.059 0.009 0.061 -0.013 0 .0 0 2

P i  0-15" - 0 .0 0 1 -0 .007 -0.059 0.019 0.066 0.000 -0.041

P i5-:io" -0 .004 0 .0 1 2 -0.031 0.003 0.027 0.003 - 0 .0 1 0

PiO-fiO" - 0 .0 0 2 0 .0 0 2 - 0 .0 2 2 0.003 0 .0 1 1 - 0 .0 0 1 0.016

Pi —2' -0 .003 0.004 -0.013 -0 .000 0 .0 1 0 0 .0 0 1 0.013

Po-5" 0.059 0.016 -0.003 0.024 0 .0 2 0 0.073 0.017

P5- 10" 0.038 - 0 .0 0 2 0.027 0 .0 1 2 - 0 .0 2 2 -0.018 - 0 .0 1 1

PlO-15" 0.034 0 .0 0 2 - 0 .0 0 2 0.006 0 .0 0 2 -0.028 0.034

Pl5-30" 0.027 0 .0 0 2 0.004 0 .0 1 0 0.004 -0.039 0 .0 2 1

P j o - c o " 0.016 0.004 0.004 0.008 -0.004 - 0 .0 1 1 0 .0 0 2

P i — 2' 0.005 0.003 0.004
203

0 .0 0 2 -0 .007 0 .0 0 2 0.000

P 2- 5' 0.003 - 0 .0 0 1 0 .0 0 1 0 .0 0 2 - 0 .0 0 1 -0 .003 -0.006

Po-15' 0 .0 0 2 0.000 - 0 .0 0 1 0 .0 0 1 0.000 -0.000 -0.000
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Table 4.10: Cox five-factor regressions for competing risks of sell order arrivals

Risk type (r) Fact.l
(activity)

Fact. 2
(imbalance)

Fact. 3
(b. pressure)

Fact.4
(adv.selection)

Fact. 5
(b.momentum)

Al: Sell below Pbid 0.988*
(23.21)

-0.115*
(-3 .47)

-0.589*
(-16.37)

-0.861*
(-11 .74)

-0.279*
(-8 .53)

A2: Market Sell 0.565*
(40.04)

-0.463*
(-32.42)

-0.423*
(-33.19)

-0.275*
(-16.55)

-0.325*
(-22.63)

A3: Sell a t Pbid 0.717*
(43.34)

-0.245*
(-14.23)

-0.391*
(-24.78)

-0.495*
(-21 .15)

-0.329*
(-18 .62)

A4: Sell a t < P^k — 1 0.053*
(2.45)

-0.078*
(-3 .00)

-0.114*
(-4.76)

0.652*
(26.61)

-0.140*
(-5 .25)

A5: Sell a t P^k — 1 0.340*
(22.45)

-0.169*
(-10.57)

-0.016
(-1.07)

0.168*
(9.61)

-0.243*
(-14 .89)

A6 : Sell a t P^k 0.412*
(37.44)

-0.199*
(-16.66)

-0.181*
(17.22)

0 .1 1 0 *
(9.38)

-0.132*
(-10 .30)

A7: Sell a t J^k  +  1 0.537*
(30.32)

-0.199*
(-12.04)

0.329*
(23.15)

-0.154*
(-9 .12)

0.091*
(5.38)

A8 : Sell a t P^k +  2 0.587*
(29.20)

-0.117*
(-4 .89)

0.313*
(15.66)

-0.108*
(-4 .56)

0.084*
(3.71)

A9: Sell a t P^k +  3 0.621*
(24.09)

-0.066
(-2 .40)

0.362*
(14.82)

- 0 .0 1 0
(-0 .35)

- 0 . 0 0 0
(-0 .02)

A10: Sell a t P^k +  4 0.609*
(10.56)

-0.063
(-1 .66)

0.385*
(11.24)

-0 .092
(-2 .24)

0.003
(0.07)

A ll: Sell a t P^k +  5 0.624*
(16.69)

-0.082
(-1 .64)

0.334*
(8.79)

0.015
(0.31)

-0 .073
(-1 .42)

A12: Sell a t <  P^k +  10 0.599*
(21.36)

-0.061
(-2 .20)

0.336*
(12.17)

0.019
(0.62)

- 0 .0 1 2
(-0 .39)

A13: Sell a t <  P ^ k +  20 0.431*
(10.53)

-0.004
(-0 .09)

0.394*
(9.43)

0.096
(2.23)

-0.214*
(-4 .27)

A14: Sell above P.usk +  20 0.355*
(8.17)

-0.038
(-0 .89)

0.271*
(6.82)

0.060
(1.30)

-0.160*
(-3 .69)
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Table 4.11: Cox five-factor regressions for competing risks of buy order arrivals

Risk type (?') Fact.l
(activity)

Fact. 2
(imbalance)

Fact.3
(b. pressure)

Fact.4
(adv.selection)

Fact. 5
(b. momentum)

Bl: Buy above P!lsb 1.013*
(22.83)

-0 .004
(-0 .08 )

0.495*
(9.99)

-0.797*
(-9 .55)

0.585*
(10.87)

B2: Market Buy 0.554*
(39.30)

0.366*
(29.45)

0.300*
(21.42)

-0.486*
(-30.06)

0.387*
(20.26)

B3: Buy a t Pilsk 0.767*
(46.3-1)

0.096*
(5.73)

0.249*
(1-1.04)

-0.650*
(-27.28)

0.463*
(24.83)

B4: Buy a t >  P bia +  1 0.123*
(5.59)

0.167*
(0.44)

0.286*
(12.52)

0.586*
(22.19)

0.156’
(5.16)

B5: Buy a t P bia +  1 0.297*
(19.72)

0.176*
(11.47)

0.053*
(3.02)

0.159*
(9.31)

0.184*
(10.40)

B6 : Buy a t Pb-Ki 0.364*
(33.95)

0.177*
(17.61)

-0.149*
(-14.29)

0 .1 1 2 *
(10.05)

0.107*
(9.05)

B7: Buy a t P|,iti — 1 0.484*
(33.31)

0.094*
(7.58)

-0.316*
(-20.39)

-0.129*
(-7 .64)

-0.048*
(-3 .24)

B8 : Buy a t P bia  — 2 0.536*
(27.07)

0.067*
(3.90)

-0.331*
(-17.11)

-0.089*
(-3 .77)

-0 .039
(-2 .19)

B9: Buy a t Pbja — 3 0.493*
(20.07)

0.057
(2.35)

-0.292*
(-11.86)

-0.082*
(-2 .72)

-0 .004
(-0 .18)

BIO: Buy at Pbi,i — 4 0.527*
(10.83)

0.074
(2.33)

-0.279*
(-9 .15)

-0.035
(-0 .88)

-0.077*
(-2 .64)

B ll: Buy at P bja — 5 0.454*
(13.99)

0.043
(1-27)

-0.232*
(-6 .74)

0 .2 0 0 *
(5.34)

0.070
(1.92)

B12: Buy at >  P bja — 10 0.471*
(20.73)

0.080*
(3.55)

-0.323*
(-13.46)

0 .1 2 0 *
(4.57)

0.023
(1.10)

B13: Buy at >  P bia — 20 0.425*
(12.82)

0.143*
(4.54)

-0.242*
(-7 .27)

0.169*
(4.78)

0.085*
(2.76)

B14: Buy below P bja — 20 0.334*
(9.45)

0 .1 2 1 *
(3.49)

-0.209*
(-6 .16)

0 .2 1 0 *
(6.05)

0.133*
(3.75)
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Table 4.12: Cox five-factor regressions for competing risks of limit order cancellations

Risk type (r) Fact.l
(activity)

Fact. 2
(imbalance)

Fact.3
(b.pressure)

Fact.4
(adv. selection)

Fact. 5
(b.momentum)

AC6: Canc.at P i lS k 0.292*
(25.56)

-0.351*
(-24.44)

-0.057*
(-4 .91)

0.151*
(12.55)

-0.171*
(-11.40)

AC7: Canc.at P a s k  +  1 0.446*
(22.85)

-0.427*
(-20.52)

0.096*
(5.30)

-0.016
(-0 .73)

0.080*
(4.01)

AC8: Canc.at +  2 0.513*
(20.98)

-0.511*
(-17.50)

0.069*
(2.88)

-0.002
(-0 .06)

0.095*
(3.48)

AC9: Canc.at P ^ k  +  3 0.553*
(18.80)

-0.518*
(-13.57)

-0.008
(-0.24)

0.017
(0.45)

0.093
(2.32)

AC10: Canc.at P a s k  +  4 0.589*
(14.29)

-0.549*
(-11.10)

-0.004
(-0 .10)

-0.090
(-1 .76)

0.108
(2.20)

AC11: Canc.at Pask  +  5 0.581*
(12.42)

-0.484*
(-8 .77)

-0.103
(-2.27)

0.028
(0.50)

-0 .008
(-0 .16 )

AC12: Canc.at <  P ; i S k  +  10 0.468*
(17.53)

-0.387*
(-12.35)

-0.162*
(-5 .81)

0.176*
(6.22)

0.118*
(4.21)

AC13: Canc.at < P ^ k  +  20 0.444*
(12.68)

-0.223*
(-5 .36)

-0.229*
(-5 .97)

0.074
(1.72)

0.182*
(4.70)

ACM: Cane.above P i l S k  +  20 0.397*
(9.88)

0.039
(0.95)

-0.179*
(-4.21)

0.249*
(6.02)

0.182*
(4.33)

BCG: Canc.at P b i d 0.214*
(18.67)

0.324*
(29.02)

0.105*
(8.96)

0.079*
(6.87)

0.188*
(14.53)

BC7: Canc.at P ^ d  — 1 0.365*
(18.63)

0.259*
(16.80)

-0.062*
(-3 .20)

-0.045
(-2 .08)

0.025
(1.40)

BC8: Canc.at P b i d  — 2 0.418*
(18.18)

0.496*
(20.75)

-0.123*
(-4 .88)

-0.155*
(-5 .68)

-0.105*
(-4 .26 )

BC9: Canc.at P b i d  -  3 0.384*
(12.21)

0.536*
(16.92)

-0.055
(-1 .57)

-0.103*
(-2 .83)

-0.086*
(-2 .61 )

BC10: Canc.at P b i d  — 4 0.463*
(10.85)

0.317*
(10.99)

0.047
(1.13)

-0.043
(-0 .89)

0.036
(1.03)

BC11: Canc.at P b K i — 5 0.506*
(12.43)

0.559*
(13.65)

0.138*
(3.56)

0.124*
(2.84)

- 0 . 0 0 0
(-0 .01 )

BC12: Canc.at >  P ^ d  — 10 0.439*
(16.60)

0.360*
(18.27)

0.188*
(7.24)

0.036
(1.27)

0.011
(0.52)

BC13: Canc.at >  P b i d  — 20 0.426*
(11.50)

0.233*
(9.09)

0.252*
(8.03)

0.131*
(3.69)

-0.158*
(-5 .37 )

BC14: Canc.below P b i d  — 20 0.372*
(9.32)

0.096*
(2.56)

0.291*
(7.88)

0.172*
(4.30)

-0 .101
(-2 .44 )
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Table 4.13: Eigenvalues and cumulative contribution of principal components to the com­

peting risk indices

1 2 3 4 5 6 7 8 9 10

Eigenvalue 20.16 7.26 5.70 4.12 2.15 1.01 0.88 0.66 0.61 0.56

Cumulative 0.438 0.596 0.720 0.810 0.857 0.879 0.898 0.912 0.925 0.937

Table 4.14: Modified classification of observable events in the forecasting model

Risk category (s) Description of event Risk types (r) included

AA Seller-initiated transaction Risks A1-A3 in Table 4.1

A P+ Ask price improvement Risks A4-A5 in Table 4.1

AD+ Ask depth improvement Risk A6 in Table 4.1

A - Ask touch cancellation Risk AC6 in Table 4.1

BB Buyer-initiated transaction Risks B1-B3 in Table 4.1

B P + Bid price improvement Risks B4-B5 in Table 4.1

BD+ Bid depth improvement Risk B6 in Table 4.1

B - Bid touch cancellation Risks BC6 in Table 4.1
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Chapter 5

Conclusion and Future Research

The analysis of the time between transactions, quotes, and other market events remains 

a popular topic of the empirical research of financial market microstructure. After the 

publication of papers by Engle and Russell ([41], [42]), a large number of extensions and 

modifications have appeared in the literature. One line research that may be entertained in 

the future takes on the possibility of using more flexible forms of the underlying distributions 

th a t might be able to capture unobserved heterogeneity. The unobserved heterogeneity can 

be introduced into the model via a random frailty parameter acting multiplicatively on the 

hazard rates of competing risks (Parner [113]). The frailty multiplier accommodating the 

clustering of the market activity may be interpreted as a latent factor which is unobserved 

by the econometrician. The frailty parameter then can be modeled as a gamma random 

variable and estimated jointly with the competing risks by the semiparametric maximum 

likelihood technique (Nielsen et al. [107]).

A closely related set of papers aim to extend the proposed framework to capture the 

serial dependence in the inter-event durations with a more flexible and parsimonious model. 

The serial dependence in activity levels that is not captured by recent transaction activity 

variables can be modeled by one or several dynamic latent factors perturbed multiplicatively 

by innovations with positive support (Bauwens and Veredas, [11]). Here the challenge is
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in developing a computationally feasible estimation procedure that deals efficiently with 

censored observations.

Another line of research tackles the challenge of extending the existing univariate dura­

tion models to the multivariate case, which opens up the possibility of the full-scale empirical 

analysis of individual assets subject to multiple risks, as well as their portfolios. The com­

peting risks approach, which is by design a multivariate methodology, represents one step 

towards this goal but still leaves open many theoretical and practical questions. In conclu­

sion, we outline two practical applications of this methodology that can be made towards 

this goal.

One natural application of the competing risks technique involves the empirical analy­

sis of thinly or irregularly traded financial instruments (Spierclijk et al. [123]) and emerging 

market securities. In combination with more traditional pricing models, the methodology 

developed in this dissertation may also be applied to the analysis of mortgage-backed secu­

rities and credit derivatives that might be simultaneously affected by complex combinations 

of qualitative risks (Duffie and Singleton [35]). For instance, credit rating agencies collecting 

information on credit histories of firms and individuals observe the times of their loan ap­

plications, debt refinancings, and bankruptcies, as well as the joint evolution of the market 

conditions and key characteristics of firms and individuals. Even though a t any moment of 

time the economic entities (firms or individuals) can be at risk of experiencing any of these 

events, it is sufficient for only one of these events to occur in order to change the state of the 

world, leading to drastic realignments of the risk profiles after event. Until recently, almost 

all empirical work in the area of credit risk management was of exploratory nature, so the 

focus should be on the development of new econometric models and rigorous quantitative 

techniques for model evaluation and forecasting.
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